Geo*_*ler 2 scala user-defined-functions apache-spark apache-spark-sql udf
我想将一个变量而不是一列传递给 spark 中的 UDF。
地图采用以下格式 Spark 数据框到嵌套地图
val joinUDF = udf((replacementLookup: Map[String, Double], newValue: String) => {
replacementLookup.get(newValue) match {
case Some(tt) => tt
case None => 0.0
}
})
Run Code Online (Sandbox Code Playgroud)
应该像这样映射
(columnsMap).foldLeft(df) {
(currentDF, colName) =>
{
println(colName._1)
println(colName._2)
currentDF
.withColumn("myColumn_" + colName._1, joinUDF(colName._2, col(colName._1)))
}
}
Run Code Online (Sandbox Code Playgroud)
但抛出
type mismatch;
[error] found : Map
[error] required: org.apache.spark.sql.Column
[error] .withColumn("myColumn_" + colName._1, joinUDF(colName._2, col(colName._1)))
Run Code Online (Sandbox Code Playgroud)
您可以使用柯里化:
import org.apache.spark.sql.functions._
val df = Seq(("a", 1), ("b", 2)).toDF("StringColumn", "IntColumn")
def joinUDF(replacementLookup: Map[String, Double]) = udf((newValue: String) => {
replacementLookup.get(newValue) match {
case Some(tt) => tt
case None => 0.0
}
})
val myMap = Map("a" -> 1.5, "b" -> 3.0)
df.select(joinUDF(myMap)($"StringColumn")).show()
Run Code Online (Sandbox Code Playgroud)
此外,您可以尝试使用广播变量:
import org.apache.spark.sql.functions._
val df = Seq(("a", 1), ("b", 2)).toDF("StringColumn", "IntColumn")
val myMap = Map("a" -> 1.5, "b" -> 3.0)
val broadcastedMap = sc.broadcast(myMap)
def joinUDF = udf((newValue: String) => {
broadcastedMap.value.get(newValue) match {
case Some(tt) => tt
case None => 0.0
}
})
df.select(joinUDF($"StringColumn")).show()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4561 次 |
| 最近记录: |