facet_wrap 中因子级别的顺序

Ale*_*der 3 r ggplot2

我想生成一个facet_wrap,其中构面内因子的顺序基于列因子顺序之一。问题的核心是每个组都有重复的因子水平,当我绘制时,只有一个因子水平在facet_wrap. (见下图)

我尝试对每个组中的因子级别进行排序,并且每个因子级别应在每个方面内正确排序。

这是我的尝试

df_pattern<- data.frame(address = rep(rep(LETTERS[1:3]),3)) 

df_TP <- data.frame(No=rep(seq(1:3)),
                    clas=c("Good","Bad","Ugly"),stringsAsFactors = F)

set.seed(12)
df_ex <- df_pattern%>%
  mutate(No=rep(seq(1:3),each=3))%>%
  left_join(df_TP)%>%
  mutate(clas=sample(clas))%>%
  group_by(No)

#      address    No  clas
#       <fctr> <int> <chr>
#    1       A     1  Good
#    2       B     1  Ugly
#    3       C     1  Ugly
#    4       A     2  Good
#    5       B     2  Ugly
#    6       C     2   Bad
#    7       A     3   Bad
#    8       B     3   Bad
#    9       C     3  Good
Run Code Online (Sandbox Code Playgroud)

现在让我们尝试根据用户定义的类列顺序对地址级别进行排序

set.seed(12)
df_ex <- df_pattern%>%
  mutate(No=rep(seq(1:3),each=3))%>%
  left_join(df_TP)%>%
  mutate(clas=sample(clas))%>%
  group_by(No)%>%
  mutate(clas=factor(clas,levels=c("Good","Bad","Ugly")))%>%
  mutate(address=factor(address,levels=unique(address[order(clas)])))%>%
  mutate(address=as.character(address))%>%
  arrange(No,clas) 

      address    No  clas
#       <fctr> <int> <ord>
#    1       A     1  Good
#    2       B     1  Ugly
#    3       C     1  Ugly
#    4       A     2  Good
#    5       C     2   Bad
#    6       B     2  Ugly
#    7       C     3  Good
#    8       A     3   Bad
#    9       B     3   Bad
Run Code Online (Sandbox Code Playgroud)

正如您所看到的,No=1图中只有正确排序的组。也许这是因为数据集中只有一个因素水平。

> levels(df_ex$address)
[1] "A" "B" "C"
Run Code Online (Sandbox Code Playgroud)

我们如何对每组中的因子水平进行排序并在facet_wrap中显示它们?根据clas每个级别facet_wrap

谢谢!

ggplot 代码

ggplot(df_ex, aes(x=address,y="",fill=clas)) + #x axis bias voltage dependence
  geom_tile() + 
  scale_fill_manual(values=c('Good'="green","Bad"="Blue","Ugly"="black"))+
  facet_wrap(~No,ncol=1,scales = "free_x")+
  theme(legend.position = "top",axis.text.y = element_text(size = 20,angle = 90),axis.text.x = element_text(size=12,face="bold",colour = "black"),
        axis.title.y = element_text(face="bold",size = 20, colour = "black"),
        axis.title.x = element_text(face="bold",size = 20 , colour = "black"),
        strip.text = element_text(size=26, face="bold"),
        strip.background = element_rect(fill="#FFFF66", colour="black", size=0.5),
        plot.title=element_text(face="bold",color="red",size=14),
        legend.title = element_text(colour="black", size=26,face="bold"),
        legend.text = element_text(colour="black", size=18))+
  labs(x = "address",y = "")
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述

Uwe*_*Uwe 6

这个老问题已经有了公认的答案。但由于它被用作欺骗目标,我觉得有必要提出一个稍微改进且更简洁的变体。

它基于该ggplot2包的最新增强功能,即labels参数scale_x_discrete(),以及forcats2016 年 8 月发布到 CRAN 的 Hadley 包。建议的解决方案通过使用此答案中的材料增强了已接受的答案

准备数据

df_exOP 提供的需要修改为包含一个变量,该变量保证所有方面的总体排序顺序:

library(dplyr)   # version 0.5.0 used 
df_ex <- df_ex %>% mutate(ordered = paste0(No, address) %>% 
                   forcats::fct_inorder())
Run Code Online (Sandbox Code Playgroud)

现在的附加列df_ex如下所示:

  address    No   clas ordered
    <chr> <int> <fctr>  <fctr>
1       A     1   Good      1A
2       B     1   Ugly      1B
3       C     1   Ugly      1C
4       A     2   Good      2A
5       C     2    Bad      2C
6       B     2   Ugly      2B
7       C     3   Good      3C
8       A     3    Bad      3A
9       B     3    Bad      3B
Run Code Online (Sandbox Code Playgroud)

由于df_ex已使用 已按所需顺序排序arrange()fct_inorder()因此返回新列ordered,其级别与其首次出现的顺序相同。

绘图

而不是address,ordered绘制在 x 轴上。该参数scales = "free_x"确保facet_wrap()未使用的级别将从构面中删除。但是,需要通过向 的参数提供命名向量来替换 x 轴上的标签。labelsscale_x_discrete()

library(ggplot2)   # version 2.2.1 used
ggplot(df_ex, aes(x=ordered,y="",fill=clas)) + #x axis bias voltage dependence
  geom_tile() + 
  scale_fill_manual(values=c('Good'="green","Bad"="Blue","Ugly"="black"))+
  facet_wrap(~No,ncol=1,scales = "free_x")+
  theme(legend.position = "top",axis.text.y = element_text(size = 20,angle = 90),axis.text.x = element_text(size=12,face="bold",colour = "black"),
        axis.title.y = element_text(face="bold",size = 20, colour = "black"),
        axis.title.x = element_text(face="bold",size = 20 , colour = "black"),
        strip.text = element_text(size=26, face="bold"),
        strip.background = element_rect(fill="#FFFF66", colour="black", size=0.5),
        plot.title=element_text(face="bold",color="red",size=14),
        legend.title = element_text(colour="black", size=26,face="bold"),
        legend.text = element_text(colour="black", size=18))+
  labs(x = "address",y = "") + 
  scale_x_discrete(labels = setNames(df_ex$address, df_ex$ord)) +
  
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述


J.C*_*Con 5

此解决方案使每个组都是唯一的,并按所需的顺序排列,然后将名称更改回原来的名称。

df_ex$names<-paste(df_ex$address,df_ex$clas,df_ex$No)
df_ex$names<-factor(df_ex$names,levels=c("A Good 1","B Ugly 1","C Ugly 1", "A Good 2", "C Bad 2", "B Ugly 2", "C Good 3", "A Bad 3", "B Bad 3"))


ggplot(df_ex, aes(x=names,y="",fill=clas)) + #x axis bias voltage dependence
  geom_tile() + 
  scale_fill_manual(values=c('Good'="green","Bad"="Blue","Ugly"="black"))+
  facet_wrap(~No,ncol=1,scales = "free_x")+
  theme(legend.position = "top",axis.text.y = element_text(size = 20,angle = 90),axis.text.x = element_text(size=12,face="bold",colour = "black"),
        axis.title.y = element_text(face="bold",size = 20, colour = "black"),
        axis.title.x = element_text(face="bold",size = 20 , colour = "black"),
        strip.text = element_text(size=26, face="bold"),
        strip.background = element_rect(fill="#FFFF66", colour="black", size=0.5),
        plot.title=element_text(face="bold",color="red",size=14),
        legend.title = element_text(colour="black", size=26,face="bold"),
        legend.text = element_text(colour="black", size=18))+
  labs(x = "address",y = "")+
  scale_x_discrete(breaks=df_ex$names, labels=df_ex$address)
Run Code Online (Sandbox Code Playgroud)

在此输入图像描述