Xuk*_*rao 35 python arrays performance numpy pandas
举个简单的例子,考虑arr
如下定义的numpy数组:
import numpy as np
arr = np.array([[5, np.nan, np.nan, 7, 2],
[3, np.nan, 1, 8, np.nan],
[4, 9, 6, np.nan, np.nan]])
Run Code Online (Sandbox Code Playgroud)
arr
在控制台输出中看起来像这样:
array([[ 5., nan, nan, 7., 2.],
[ 3., nan, 1., 8., nan],
[ 4., 9., 6., nan, nan]])
Run Code Online (Sandbox Code Playgroud)
我现在想逐行'向前填充' nan
数组中的值arr
.我的意思是用nan
左边最近的有效值替换每个值.期望的结果如下所示:
array([[ 5., 5., 5., 7., 2.],
[ 3., 3., 1., 8., 8.],
[ 4., 9., 6., 6., 6.]])
Run Code Online (Sandbox Code Playgroud)
我尝试过使用for循环:
for row_idx in range(arr.shape[0]):
for col_idx in range(arr.shape[1]):
if np.isnan(arr[row_idx][col_idx]):
arr[row_idx][col_idx] = arr[row_idx][col_idx - 1]
Run Code Online (Sandbox Code Playgroud)
我也尝试使用pandas数据帧作为中间步骤(因为pandas数据帧有一个非常简洁的内置前向填充方法):
import pandas as pd
df = pd.DataFrame(arr)
df.fillna(method='ffill', axis=1, inplace=True)
arr = df.as_matrix()
Run Code Online (Sandbox Code Playgroud)
上述两种策略都会产生预期的结果,但我一直想知道:只使用numpy矢量化操作的策略不是最有效的策略吗?
是否有另一种更有效的方法来nan
在numpy数组中"前向填充" 值?(例如,通过使用numpy向量化操作)
到目前为止,我已尝试计算所有解决方案.这是我的设置脚本:
import numba as nb
import numpy as np
import pandas as pd
def random_array():
choices = [1, 2, 3, 4, 5, 6, 7, 8, 9, np.nan]
out = np.random.choice(choices, size=(1000, 10))
return out
def loops_fill(arr):
out = arr.copy()
for row_idx in range(out.shape[0]):
for col_idx in range(1, out.shape[1]):
if np.isnan(out[row_idx, col_idx]):
out[row_idx, col_idx] = out[row_idx, col_idx - 1]
return out
@nb.jit
def numba_loops_fill(arr):
'''Numba decorator solution provided by shx2.'''
out = arr.copy()
for row_idx in range(out.shape[0]):
for col_idx in range(1, out.shape[1]):
if np.isnan(out[row_idx, col_idx]):
out[row_idx, col_idx] = out[row_idx, col_idx - 1]
return out
def pandas_fill(arr):
df = pd.DataFrame(arr)
df.fillna(method='ffill', axis=1, inplace=True)
out = df.as_matrix()
return out
def numpy_fill(arr):
'''Solution provided by Divakar.'''
mask = np.isnan(arr)
idx = np.where(~mask,np.arange(mask.shape[1]),0)
np.maximum.accumulate(idx,axis=1, out=idx)
out = arr[np.arange(idx.shape[0])[:,None], idx]
return out
Run Code Online (Sandbox Code Playgroud)
然后是这个控制台输入:
%timeit -n 1000 loops_fill(random_array())
%timeit -n 1000 numba_loops_fill(random_array())
%timeit -n 1000 pandas_fill(random_array())
%timeit -n 1000 numpy_fill(random_array())
Run Code Online (Sandbox Code Playgroud)
导致此控制台输出:
1000 loops, best of 3: 9.64 ms per loop
1000 loops, best of 3: 377 µs per loop
1000 loops, best of 3: 455 µs per loop
1000 loops, best of 3: 351 µs per loop
Run Code Online (Sandbox Code Playgroud)
Div*_*kar 37
这是一种方法 -
mask = np.isnan(arr)
idx = np.where(~mask,np.arange(mask.shape[1]),0)
np.maximum.accumulate(idx,axis=1, out=idx)
out = arr[np.arange(idx.shape[0])[:,None], idx]
Run Code Online (Sandbox Code Playgroud)
如果您不想创建另一个数组并且只是填充NaNs,请arr
用此替换最后一步 -
arr[mask] = arr[np.nonzero(mask)[0], idx[mask]]
Run Code Online (Sandbox Code Playgroud)
样本输入,输出 -
In [179]: arr
Out[179]:
array([[ 5., nan, nan, 7., 2., 6., 5.],
[ 3., nan, 1., 8., nan, 5., nan],
[ 4., 9., 6., nan, nan, nan, 7.]])
In [180]: out
Out[180]:
array([[ 5., 5., 5., 7., 2., 6., 5.],
[ 3., 3., 1., 8., 8., 5., 5.],
[ 4., 9., 6., 6., 6., 6., 7.]])
Run Code Online (Sandbox Code Playgroud)
我喜欢 Divakar 对 pure numpy 的回答。这是 n 维数组的广义函数:
def np_ffill(arr, axis):
idx_shape = tuple([slice(None)] + [np.newaxis] * (len(arr.shape) - axis - 1))
idx = np.where(~np.isnan(arr), np.arange(arr.shape[axis])[idx_shape], 0)
np.maximum.accumulate(idx, axis=axis, out=idx)
slc = [np.arange(k)[tuple([slice(None) if dim==i else np.newaxis
for dim in range(len(arr.shape))])]
for i, k in enumerate(arr.shape)]
slc[axis] = idx
return arr[tuple(slc)]
Run Code Online (Sandbox Code Playgroud)
尽管有多索引来弥补,但 AFIK pandas 只能处理二维。实现此目的的唯一方法是展平 DataFrame、取消堆叠所需级别、重新堆叠,最后重新整形为原始形状。这种拆栈/重新堆叠/重塑(涉及 pandas 排序)只是实现相同结果的不必要的开销。
测试:
def random_array(shape):
choices = [1, 2, 3, 4, np.nan]
out = np.random.choice(choices, size=shape)
return out
ra = random_array((2, 4, 8))
print('arr')
print(ra)
print('\nffull')
print(np_ffill(ra, 1))
raise SystemExit
Run Code Online (Sandbox Code Playgroud)
输出:
arr
[[[ 3. nan 4. 1. 4. 2. 2. 3.]
[ 2. nan 1. 3. nan 4. 4. 3.]
[ 3. 2. nan 4. nan nan 3. 4.]
[ 2. 2. 2. nan 1. 1. nan 2.]]
[[ 2. 3. 2. nan 3. 3. 3. 3.]
[ 3. 3. 1. 4. 1. 4. 1. nan]
[ 4. 2. nan 4. 4. 3. nan 4.]
[ 2. 4. 2. 1. 4. 1. 3. nan]]]
ffull
[[[ 3. nan 4. 1. 4. 2. 2. 3.]
[ 2. nan 1. 3. 4. 4. 4. 3.]
[ 3. 2. 1. 4. 4. 4. 3. 4.]
[ 2. 2. 2. 4. 1. 1. 3. 2.]]
[[ 2. 3. 2. nan 3. 3. 3. 3.]
[ 3. 3. 1. 4. 1. 4. 1. 3.]
[ 4. 2. 1. 4. 4. 3. 1. 4.]
[ 2. 4. 2. 1. 4. 1. 3. 4.]]]
Run Code Online (Sandbox Code Playgroud)
更新:正如 Financial_Physician 在评论中指出的那样,我最初提出的解决方案可以简单地ffill
在反转数组上进行交换,然后反转结果。不存在相关的性能损失。根据 ,我最初的解决方案似乎快了 2% 或 3% %timeit
。我更新了下面的代码示例,但保留了最初的文本。
对于那些来这里寻找 NaN 值的向后填充的人,我修改了上面 Divakar 提供的解决方案来做到这一点。诀窍在于,您必须使用除最大值之外的最小值对反转数组进行累加。
这是代码:
# ffill along axis 1, as provided in the answer by Divakar
def ffill(arr):
mask = np.isnan(arr)
idx = np.where(~mask, np.arange(mask.shape[1]), 0)
np.maximum.accumulate(idx, axis=1, out=idx)
out = arr[np.arange(idx.shape[0])[:,None], idx]
return out
# Simple solution for bfill provided by financial_physician in comment below
def bfill(arr):
return ffill(arr[:, ::-1])[:, ::-1]
# My outdated modification of Divakar's answer to do a backward-fill
def bfill_old(arr):
mask = np.isnan(arr)
idx = np.where(~mask, np.arange(mask.shape[1]), mask.shape[1] - 1)
idx = np.minimum.accumulate(idx[:, ::-1], axis=1)[:, ::-1]
out = arr[np.arange(idx.shape[0])[:,None], idx]
return out
# Test both functions
arr = np.array([[5, np.nan, np.nan, 7, 2],
[3, np.nan, 1, 8, np.nan],
[4, 9, 6, np.nan, np.nan]])
print('Array:')
print(arr)
print('\nffill')
print(ffill(arr))
print('\nbfill')
print(bfill(arr))
Run Code Online (Sandbox Code Playgroud)
输出:
Array:
[[ 5. nan nan 7. 2.]
[ 3. nan 1. 8. nan]
[ 4. 9. 6. nan nan]]
ffill
[[5. 5. 5. 7. 2.]
[3. 3. 1. 8. 8.]
[4. 9. 6. 6. 6.]]
bfill
[[ 5. 7. 7. 7. 2.]
[ 3. 1. 1. 8. nan]
[ 4. 9. 6. nan nan]]
Run Code Online (Sandbox Code Playgroud)
编辑:根据MS_的评论更新
使用Numba。这将大大提高速度:
import numba
@numba.jit
def loops_fill(arr):
...
Run Code Online (Sandbox Code Playgroud)
瓶颈推送功能是向前填充的一个不错的选择。它通常在 Xarray 等软件包内部使用,它应该比其他替代方案更快,并且该软件包还有一组基准测试。
例子:
import numpy as np
from bottleneck import push
a = np.array(
[
[1, np.nan, 3],
[np.nan, 3, 2],
[2, np.nan, np.nan]
]
)
push(a, axis=0)
array([[ 1., nan, 3.],
[ 1., 3., 2.],
[ 2., 3., 2.]])
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
12667 次 |
最近记录: |