如何使用 Hazm 规范化波斯文本

sar*_*ara 3 nlp persian python-3.x

我有一个包含一些其他文件夹的文件夹,每个文件夹都包含很多文本文件。我必须在特定单词前后提取5 个单词,并且以下代码工作正常。

问题是因为我没有对文本进行标准化,所以它只会返回几句话,而还有更多。在波斯语中,有一个名为hazm的模块用于规范化文本。我如何在这段代码中使用它?

例如规范化:“?” 应该改为“?” “?” 应该改为“?”。因为前两个实际上是在波斯语中使用的阿拉伯字母。没有规范化代码只返回用第二种形式写的单词,它不能识别第一种形式的单词阿拉伯语)。

import os
from hazm import Normalizer


def getRollingWindow(seq, w):
    win = [next(seq) for _ in range(11)]
    yield win
    for e in seq:
        win[:-1] = win[1:]
        win[-1] = e
        yield win


def extractSentences(rootDir, searchWord):
    with open("????", "w", encoding="utf-8") as outfile:
        for root, _dirs, fnames in os.walk(rootDir):
            for fname in fnames:
                print("Looking in", os.path.join(root, fname))
                with open(os.path.join(root, fname), encoding = "utf-8") as infile:
                    #normalizer = Normalizer()
                    #fname = normalizer.normalize(fname)
                    for window in getRollingWindow((word for line in infile for word in line(normalizer.normalize(line)).split()), 11):
                        if window[5] != searchWord: continue
                        outfile.write(' '.join(window)+ "\n")
Run Code Online (Sandbox Code Playgroud)

Ami*_*mir 6

我没有使用Hazm 的经验,但是使用以下代码可以很容易地将其标准化。(注意这里我们只是用波斯语替换阿拉伯字符)

def clean_sentence(sentence):
    sentence = arToPersianChar(sentence)
    sentence = arToPersianNumb(sentence)
    # more_normalization_function()
    return sentence


def arToPersianNumb(number):
    dic = {
        '?': '?',
        '?': '?',
        '?': '?',
        '?': '?',
        '?': '?',
        '?': '?',
        '?': '?',
        '?': '?',
        '?': '?',
        '?': '?',
    }
    return multiple_replace(dic, number)


def arToPersianChar(userInput):
    dic = {
        '?': '?',
        '??': '?',
        '??': '?',
        '??': '?',
        '??': '?',
        '??': '?',
        '??': '?',
        '?': '?',
        '?': '?'
}
return multiple_replace(dic, userInput)


def multiple_replace(dic, text):
    pattern = "|".join(map(re.escape, dic.keys()))
    return re.sub(pattern, lambda m: dic[m.group()], str(text))
Run Code Online (Sandbox Code Playgroud)

只需要阅读文档的每一行并将其传递给clean_sentence()

def clean_all(document):
    clean = ''
    for sentence in document:
        sentence = clean_sentence(sentence)
        clean += ' \n' + sentence
    return clean
Run Code Online (Sandbox Code Playgroud)