mce*_*aya 6 scala apache-spark apache-spark-ml apache-spark-mllib
我在DataBricks上尝试了标准的spark HashingTF示例.
import org.apache.spark.ml.feature.{HashingTF, IDF, Tokenizer}
val sentenceData = spark.createDataFrame(Seq(
(0, "Hi I heard about Spark"),
(0, "I wish Java could use case classes"),
(1, "Logistic regression models are neat")
)).toDF("label", "sentence")
val tokenizer = new Tokenizer().setInputCol("sentence").setOutputCol("words")
val wordsData = tokenizer.transform(sentenceData)
val hashingTF = new HashingTF()
.setInputCol("words").setOutputCol("rawFeatures").setNumFeatures(20)
val featurizedData = hashingTF.transform(wordsData)
display(featurizedData)
Run Code Online (Sandbox Code Playgroud)
我对下面的理解结果很不满意. 请参阅图像 当numFeatures为20时
[0,20,[0,5,9,17],[1,1,1,2]]
[0,20,[2,7,9,13,15],[1,1,3,1,1]]
[0,20,[4,6,13,15,18],[1,1,1,1,1]]
Run Code Online (Sandbox Code Playgroud)
如果[0,5,9,17]是哈希值
而[1,1,1,2 ]是频率.
17具有频率2
9有3(它有2)
13,15有1而它们必须有2.
可能我错过了一些东西.找不到详细解释的文档.
| 归档时间: |
|
| 查看次数: |
2573 次 |
| 最近记录: |