为什么加入失败的"java.util.concurrent.TimeoutException:期货在[300秒]之后超时"?

Chr*_*lis 41 scala join apache-spark apache-spark-sql

我正在使用Spark 1.5.

我有两个表格的数据框:

scala> libriFirstTable50Plus3DF
res1: org.apache.spark.sql.DataFrame = [basket_id: string, family_id: int]

scala> linkPersonItemLessThan500DF
res2: org.apache.spark.sql.DataFrame = [person_id: int, family_id: int]
Run Code Online (Sandbox Code Playgroud)

libriFirstTable50Plus3DF766,151条记录,linkPersonItemLessThan500DF26,694,353条记录.请注意我正在使用repartition(number),linkPersonItemLessThan500DF因为我打算稍后加入这两个.我正在跟进以上代码:

val userTripletRankDF = linkPersonItemLessThan500DF
     .join(libriFirstTable50Plus3DF, Seq("family_id"))
     .take(20)
     .foreach(println(_))
Run Code Online (Sandbox Code Playgroud)

我得到这个输出:

16/12/13 15:07:10 INFO scheduler.TaskSetManager: Finished task 172.0 in stage 3.0 (TID 473) in 520 ms on mlhdd01.mondadori.it (199/200)
java.util.concurrent.TimeoutException: Futures timed out after [300 seconds]
at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:219)
at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:        at scala.concurrent.Await$.result(package.scala:107)
at org.apache.spark.sql.execution.joins.BroadcastHashJoin.doExecute(BroadcastHashJoin.scala:110)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
at org.apache.spark.sql.execution.TungstenProject.doExecute(basicOperators.scala:86)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
at org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:63)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:140)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:147)
 at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:138)
 at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:190)
 at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:207)
 at org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1386)
 at org.apache.spark.sql.DataFrame$$anonfun$collect$1.apply(DataFrame.scala:1386)
 at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
 at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:1904)
 at org.apache.spark.sql.DataFrame.collect(DataFrame.scala:1385)
 at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1315)
 at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1378)
 at org.apache.spark.sql.DataFrame.showString(DataFrame.scala:178)
 at org.apache.spark.sql.DataFrame.show(DataFrame.scala:402)
 at org.apache.spark.sql.DataFrame.show(DataFrame.scala:363)
 at org.apache.spark.sql.DataFrame.show(DataFrame.scala:371)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:72)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:77)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:79)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:81)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:83)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:85)
 at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:87)
 at $iwC$$iwC$$iwC$$iwC$$iwC.<init>(<console>:89)
 at $iwC$$iwC$$iwC$$iwC.<init>(<console>:91)
 at $iwC$$iwC$$iwC.<init>(<console>:93)
 at $iwC$$iwC.<init>(<console>:95)
 at $iwC.<init>(<console>:97)
 at <init>(<console>:99)
 at .<init>(<console>:103)
 at .<clinit>(<console>)
 at .<init>(<console>:7)
 at .<clinit>(<console>)
 at $print(<console>)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:606)
 at org.apache.spark.repl.SparkIMain$ReadEvalPrint.call(SparkIMain.scala:1065)
 at org.apache.spark.repl.SparkIMain$Request.loadAndRun(SparkIMain.scala:1340)
 at org.apache.spark.repl.SparkIMain.loadAndRunReq$1(SparkIMain.scala:840)
 at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:871)
 at org.apache.spark.repl.SparkIMain.interpret(SparkIMain.scala:819)
 at org.apache.spark.repl.SparkILoop.reallyInterpret$1(SparkILoop.scala:857)
 at org.apache.spark.repl.SparkILoop.interpretStartingWith(SparkILoop.scala:902)
 at org.apache.spark.repl.SparkILoop.command(SparkILoop.scala:814)
 at org.apache.spark.repl.SparkILoop.processLine$1(SparkILoop.scala:657)
 at org.apache.spark.repl.SparkILoop.innerLoop$1(SparkILoop.scala:665)
 at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$loop(SparkILoop.scala:670)
 at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply$mcZ$sp(SparkILoop.scala:997)
 at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
 at org.apache.spark.repl.SparkILoop$$anonfun$org$apache$spark$repl$SparkILoop$$process$1.apply(SparkILoop.scala:945)
 at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135)
 at org.apache.spark.repl.SparkILoop.org$apache$spark$repl$SparkILoop$$process(SparkILoop.scala:945)
 at org.apache.spark.repl.SparkILoop.process(SparkILoop.scala:1059)
 at org.apache.spark.repl.Main$.main(Main.scala:31)
 at org.apache.spark.repl.Main.main(Main.scala)
 at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
 at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
 at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
 at java.lang.reflect.Method.invoke(Method.java:606)
 at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:672)
 at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:180)
 at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:205)
 at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:120)
 at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Run Code Online (Sandbox Code Playgroud)

我不明白这是什么问题.是否像增加等待时间一样简单?加入过于密集吗?我需要更多内存吗?混乱密集吗?有人可以帮忙吗?

T. *_*ęda 65

发生这种情况是因为Spark尝试进行广播散列连接并且其中一个DataFrame非常大,因此发送它会消耗很多时间.

您可以:

  1. 设置为更高spark.sql.broadcastTimeout以增加超时 -spark.conf.set("spark.sql.broadcastTimeout", newValueForExample36000)
  2. persist()两个DataFrame,然后Spark将使用Shuffle Join - 从这里引用

PySpark

在PySpark中,您可以在以下列方式构建spark上下文时设置配置:

spark = SparkSession
  .builder
  .appName("Your App")
  .config("spark.sql.broadcastTimeout", "36000")
  .getOrCreate()
Run Code Online (Sandbox Code Playgroud)


Jac*_*ski 24

只是为@T非常简洁的答案添加一些代码上下文.Gawęda.


在Spark应用程序中,Spark SQL确实为连接选择了广播散列连接,因为"libriFirstTable50Plus3DF有766,151条记录",恰好小于所谓的广播阈值(默认为10MB).

您可以使用spark.sql.autoBroadcastJoinThreshold配置属性控制广播阈值.

spark.sql.autoBroadcastJoinThreshold配置在执行连接时将广播到所有工作节点的表的最大大小(以字节为单位).通过将此值设置为-1,可以禁用广播.请注意,目前只有运行命令ANALYZE TABLE COMPUTE STATISTICS noscan的Hive Metastore表支持统计信息.

您可以在堆栈跟踪中找到特定类型的连接:

org.apache.spark.sql.execution.joins.BroadcastHashJoin.doExecute(BroadcastHashJoin.scala:110)

BroadcastHashJoinSpark SQL中的物理运算符使用广播变量将较小的数据集分发给Spark执行程序(而不是随每个任务传送它的副本).

如果您曾经explain查看过物理查询计划,则会注意到查询使用的是BroadcastExchangeExec物理运算符.在这里您可以看到用于广播较小表(以及超时)的底层机制.

override protected[sql] def doExecuteBroadcast[T](): broadcast.Broadcast[T] = {
  ThreadUtils.awaitResult(relationFuture, timeout).asInstanceOf[broadcast.Broadcast[T]]
}
Run Code Online (Sandbox Code Playgroud)

doExecuteBroadcastSparkPlanSpark SQL中的每个物理运算符都遵循的合同的一部分,允许在需要时进行广播.BroadcastExchangeExec碰巧需要它.

超时参数是你在找什么.

private val timeout: Duration = {
  val timeoutValue = sqlContext.conf.broadcastTimeout
  if (timeoutValue < 0) {
    Duration.Inf
  } else {
    timeoutValue.seconds
  }
}
Run Code Online (Sandbox Code Playgroud)

正如您所看到的,您可以完全禁用它(使用负值),这意味着等待广播变量无限期地传送给执行程序或使用sqlContext.conf.broadcastTimeout正是spark.sql.broadcastTimeout配置属性.默认值是5 * 60您可以在stacktrace中看到的秒数:

java.util.concurrent.TimeoutException:期货在[300秒]后超时

  • 发生此超时的原因可能有多种。其中一个原因是缺乏在集群上运行执行程序的资源。可以使用spark.scheduler.minRegisteredResourcesRatio和spark.scheduler.maxRegisteredResourcesWaitingTime使执行等待,直到资源可用。 (2认同)

las*_*ker 8

除了增加spark.sql.broadcastTimeout或 persist() 两个 DataFrame 之外,

您可以尝试:

spark.sql.autoBroadcastJoinThreshold1.通过设置禁用广播-1

spark.driver.memory2.通过设置更高的值来增加 Spark 驱动程序内存。

  • 如果错误是由于超时造成的,为什么“spark.driver.memory”可以提供帮助? (3认同)