在keras中拆分图层的输出

Sha*_* RC 6 python machine-learning neural-network deep-learning keras

说,我有一个输出dims(4,x,y)的图层.我想把它分成4个单独的(1,x,y)张量,我可以用它作为4个其他层的输入.

我基本上寻找的是与Merge层相反的东西.我知道keras中没有分割层,但是在keras中有一个简单的方法吗?

mha*_*hat 7

您可以定义Lambda层来为您进行切片

from keras.layers import Lambda
from keras.backend import slice
.
.
x = Lambda( lambda x: slice(x, START, SIZE))(x)
Run Code Online (Sandbox Code Playgroud)

对于您的具体示例,请尝试:

x1 = Lambda( lambda x: slice(x, (0, 0, 0), (1, -1, -1)))(x)
x2 = Lambda( lambda x: slice(x, (1, 0, 0), (1, -1, -1)))(x)
x3 = Lambda( lambda x: slice(x, (2, 0, 0), (1, -1, -1)))(x)
x4 = Lambda( lambda x: slice(x, (3, 0, 0), (1, -1, -1)))(x)
Run Code Online (Sandbox Code Playgroud)

  • 这正如提到的那样工作。更新:不过,对于较新的tensorflow版本,需要使用“tensorflow.slice”。`K.slice` 已[弃用](https://github.com/keras-team/keras-contrib/issues/488) (2认同)

Was*_*mad 6

你在找这样的东西吗?

import keras.backend as K
import numpy as np

val = np.random.random((4, 2, 3))
t = K.variable(value=val)
t1 = t[0, :, :]
t2 = t[1, :, :]
t3 = t[2, :, :]
t4 = t[3, :, :]

print('t1:\n', K.eval(t1))
print('t2:\n', K.eval(t2))
print('t3:\n', K.eval(t3))
print('t4:\n', K.eval(t4))
print('t:\n', K.eval(t))
Run Code Online (Sandbox Code Playgroud)

它给出了以下输出:

t1:
 [[ 0.18787734  0.1085723   0.01127671]
 [ 0.06032621  0.14528386  0.21176969]]
t2:
 [[ 0.34292713  0.56848335  0.83797884]
 [ 0.11579451  0.21607392  0.80680907]]
t3:
 [[ 0.1908586   0.48186591  0.23439431]
 [ 0.93413448  0.535191    0.16410089]]
t4:
 [[ 0.54303145  0.78971165  0.9961108 ]
 [ 0.87826216  0.49061012  0.42450914]]
t:
 [[[ 0.18787734  0.1085723   0.01127671]
  [ 0.06032621  0.14528386  0.21176969]]

 [[ 0.34292713  0.56848335  0.83797884]
  [ 0.11579451  0.21607392  0.80680907]]

 [[ 0.1908586   0.48186591  0.23439431]
  [ 0.93413448  0.535191    0.16410089]]

 [[ 0.54303145  0.78971165  0.9961108 ]
  [ 0.87826216  0.49061012  0.42450914]]]
Run Code Online (Sandbox Code Playgroud)

请注意,现在t1, t2, t3, t4shape(2,3).

print(t1.shape.eval()) # prints [2 3]
Run Code Online (Sandbox Code Playgroud)

因此,如果要保持3d形状,则需要执行以下操作:

t1 = t[0, :, :].reshape((1, 2, 3))
t2 = t[1, :, :].reshape((1, 2, 3))
t3 = t[2, :, :].reshape((1, 2, 3))
t4 = t[3, :, :].reshape((1, 2, 3))
Run Code Online (Sandbox Code Playgroud)

现在,您可以获得正确尺寸的吐出张量.

print(t1.shape.eval()) # prints [1 2 3]
Run Code Online (Sandbox Code Playgroud)

希望它能帮助您解决问题.