Yar*_*tov 14 wolfram-mathematica graph-drawing
我想以编程方式创建这样的图表 http://yaroslavvb.com/upload/junction-tree-decomposition.png
我想我应该使用带有VertexCoordinateRules,VertexRenderingFunction和EdgeRenderingFunction的GraphPlot作为图形.我应该使用什么彩色斜面背景?
编辑 主要使用Simon的想法,这是我最终使用的简化的"不太健壮"的版本
Needs["GraphUtilities`"]; GraphPlotHighlight[edges_, verts_, color_] := Module[{}, vpos = Position[VertexList[edges], Alternatives @@ verts]; coords = Extract[GraphCoordinates[edges], vpos]; (* add .002 because end-cap disappears when segments are almost colinear *) AppendTo[coords, First[coords] + .002]; Show[Graphics[{color, CapForm["Round"], JoinForm["Round"], Thickness[.2], Line[coords], Polygon[coords]}], GraphPlot[edges], ImageSize -> 150] ] SetOptions[GraphPlot, VertexRenderingFunction -> ({White, EdgeForm[Black], Disk[#, .15], Black, Text[#2, #1]} &), EdgeRenderingFunction -> ({Black, Line[#]} &)]; edges = GraphData[{"Grid", {3, 3}}, "EdgeRules"]; colors = {LightBlue, LightGreen, LightRed, LightMagenta}; vsets = {{8, 5, 2}, {7, 5, 8}, {9, 6, 3}, {8, 1, 2}}; MapThread[GraphPlotHighlight[edges, #1, #2] &, {vsets, colors}]
Sim*_*mon 11
我得到了推论Samsdram的答案
GraphPlotHighlight[edges:{((_->_)|{_->_,_})..},hl:{___}:{},opts:OptionsPattern[]]:=Module[{verts,coords,g,sub},
verts=Flatten[edges/.Rule->List]//.{a___,b_,c___,b_,d___}:>{a,b,c,d};
g=GraphPlot[edges,FilterRules[{opts}, Options[GraphPlot]]];
coords=VertexCoordinateRules/.Cases[g,HoldPattern[VertexCoordinateRules->_],2];
sub=Flatten[Position[verts,_?(MemberQ[hl,#]&)]];
coords=coords[[sub]];
Show[Graphics[{OptionValue[HighlightColor],CapForm["Round"],JoinForm["Round"],Thickness[OptionValue[HighlightThickness]],Line[AppendTo[coords,First[coords]]],Polygon[coords]}],g]
]
Protect[HighlightColor,HighlightThickness];
Options[GraphPlotHighlight]=Join[Options[GraphPlot],{HighlightColor->LightBlue,HighlightThickness->.15}];
Run Code Online (Sandbox Code Playgroud)
上面的一些代码可以更加健壮,但它可以工作:
GraphPlotHighlight[{b->c,a->b,c->a,e->c},{b,c,e},VertexLabeling->True,HighlightColor->LightRed,HighlightThickness->.1,VertexRenderingFunction -> ({White, EdgeForm[Black], Disk[#, .06],
Black, Text[#2, #1]} &)]
Run Code Online (Sandbox Code Playgroud)
编辑#1:此代码的清理版本可在http://gist.github.com/663438找到
编辑#2:正如下面的评论中所讨论的,我edges
必须匹配的模式是带有可选标签的边缘规则列表.这略微不如GraphPlot
函数(以及上述要点中的版本)所使用的一般,其中边缘规则也允许包含在a中Tooltip
.
为了找到GraphPlot
我重复使用的确切模式,感兴趣的对象Unprotect[fn];ClearAttributes[fn,ReadProtected];Information[fn]
在哪里fn
,直到我发现它使用了以下(清理)函数:
Network`GraphPlot`RuleListGraphQ[x_] :=
ListQ[x] && Length[x] > 0 &&
And@@Map[Head[#1] === Rule
|| (ListQ[#1] && Length[#1] == 2 && Head[#1[[1]]] === Rule)
|| (Head[#1] === Tooltip && Length[#1] == 2 && Head[#1[[1]]] === Rule)&,
x, {1}]
Run Code Online (Sandbox Code Playgroud)
我认为我的edges:{((_ -> _) | (List|Tooltip)[_ -> _, _])..}
模式相同而且更简洁......
对于仅连接两个节点的简单示例(如最右侧的示例),您可以像这样绘制带有上限端点的线.
vertices = {a, b};
Coordinates = {{0, 0}, {1, 1}};
GraphPlot[{a -> b}, VertexLabeling -> True,
VertexCoordinateRules ->
MapThread[#1 -> #2 &, {vertices, Coordinates}],
Prolog -> {Blue, CapForm["Round"], Thickness[.1], Line[Coordinates]}]
Run Code Online (Sandbox Code Playgroud)
对于更复杂的示例(如右起第二个),我建议使用顶点坐标绘制多边形,然后使用带帽线跟踪多边形的边缘.我找不到直接向多边形添加斜边的方法.跟踪多边形的周长时,需要将第一个顶点的坐标添加到线段的末尾,该线条构成多边形的完整周长.另外,CapForm行有两个独立的图形指令,它们指示是否斜切线的末端,而JoinForm指示是否斜切线的中间点.
vertices = {a, b, c};
Coordinates = {{0, 0}, {1, 1}, {1, -1}};
GraphPlot[{a -> b, b -> c, c -> a}, VertexLabeling -> True,
VertexCoordinateRules ->
MapThread[#1 -> #2 &, {vertices, Coordinates}],
Prolog -> {Blue, CapForm["Round"], JoinForm["Round"], Thickness[.15],
Line[AppendTo[Coordinates, First[Coordinates]]],
Polygon[Coordinates]}]
Run Code Online (Sandbox Code Playgroud)