Ric*_*nop 4 python matlab artificial-intelligence machine-learning neural-network
我该怎么做.我有一个黑白图像(100x100px):

我应该用这个图像训练一个反向传播神经网络.输入是图像的x,y坐标(从0到99),输出为1(白色)或0(黑色).
一旦网络学会了,我希望它能够根据其权重重现图像,并获得与原始图像最接近的图像.
这是我的backprop实现:
import os
import math
import Image
import random
from random import sample
#------------------------------ class definitions
class Weight:
def __init__(self, fromNeuron, toNeuron):
self.value = random.uniform(-0.5, 0.5)
self.fromNeuron = fromNeuron
self.toNeuron = toNeuron
fromNeuron.outputWeights.append(self)
toNeuron.inputWeights.append(self)
self.delta = 0.0 # delta value, this will accumulate and after each training cycle used to adjust the weight value
def calculateDelta(self, network):
self.delta += self.fromNeuron.value * self.toNeuron.error
class Neuron:
def __init__(self):
self.value = 0.0 # the output
self.idealValue = 0.0 # the ideal output
self.error = 0.0 # error between output and ideal output
self.inputWeights = []
self.outputWeights = []
def activate(self, network):
x = 0.0;
for weight in self.inputWeights:
x += weight.value * weight.fromNeuron.value
# sigmoid function
if x < -320:
self.value = 0
elif x > 320:
self.value = 1
else:
self.value = 1 / (1 + math.exp(-x))
class Layer:
def __init__(self, neurons):
self.neurons = neurons
def activate(self, network):
for neuron in self.neurons:
neuron.activate(network)
class Network:
def __init__(self, layers, learningRate):
self.layers = layers
self.learningRate = learningRate # the rate at which the network learns
self.weights = []
for hiddenNeuron in self.layers[1].neurons:
for inputNeuron in self.layers[0].neurons:
self.weights.append(Weight(inputNeuron, hiddenNeuron))
for outputNeuron in self.layers[2].neurons:
self.weights.append(Weight(hiddenNeuron, outputNeuron))
def setInputs(self, inputs):
self.layers[0].neurons[0].value = float(inputs[0])
self.layers[0].neurons[1].value = float(inputs[1])
def setExpectedOutputs(self, expectedOutputs):
self.layers[2].neurons[0].idealValue = expectedOutputs[0]
def calculateOutputs(self, expectedOutputs):
self.setExpectedOutputs(expectedOutputs)
self.layers[1].activate(self) # activation function for hidden layer
self.layers[2].activate(self) # activation function for output layer
def calculateOutputErrors(self):
for neuron in self.layers[2].neurons:
neuron.error = (neuron.idealValue - neuron.value) * neuron.value * (1 - neuron.value)
def calculateHiddenErrors(self):
for neuron in self.layers[1].neurons:
error = 0.0
for weight in neuron.outputWeights:
error += weight.toNeuron.error * weight.value
neuron.error = error * neuron.value * (1 - neuron.value)
def calculateDeltas(self):
for weight in self.weights:
weight.calculateDelta(self)
def train(self, inputs, expectedOutputs):
self.setInputs(inputs)
self.calculateOutputs(expectedOutputs)
self.calculateOutputErrors()
self.calculateHiddenErrors()
self.calculateDeltas()
def learn(self):
for weight in self.weights:
weight.value += self.learningRate * weight.delta
def calculateSingleOutput(self, inputs):
self.setInputs(inputs)
self.layers[1].activate(self)
self.layers[2].activate(self)
#return round(self.layers[2].neurons[0].value, 0)
return self.layers[2].neurons[0].value
#------------------------------ initialize objects etc
inputLayer = Layer([Neuron() for n in range(2)])
hiddenLayer = Layer([Neuron() for n in range(10)])
outputLayer = Layer([Neuron() for n in range(1)])
learningRate = 0.4
network = Network([inputLayer, hiddenLayer, outputLayer], learningRate)
# let's get the training set
os.chdir("D:/stuff")
image = Image.open("backprop-input.gif")
pixels = image.load()
bbox = image.getbbox()
width = 5#bbox[2] # image width
height = 5#bbox[3] # image height
trainingInputs = []
trainingOutputs = []
b = w = 0
for x in range(0, width):
for y in range(0, height):
if (0, 0, 0, 255) == pixels[x, y]:
color = 0
b += 1
elif (255, 255, 255, 255) == pixels[x, y]:
color = 1
w += 1
trainingInputs.append([float(x), float(y)])
trainingOutputs.append([float(color)])
print "\nOriginal image ... Black:"+str(b)+" White:"+str(w)+"\n"
#------------------------------ let's train
for i in range(500):
for j in range(len(trainingOutputs)):
network.train(trainingInputs[j], trainingOutputs[j])
network.learn()
for w in network.weights:
w.delta = 0.0
#------------------------------ let's check
b = w = 0
for x in range(0, width):
for y in range(0, height):
out = network.calculateSingleOutput([float(x), float(y)])
if 0.0 == round(out):
color = (0, 0, 0, 255)
b += 1
elif 1.0 == round(out):
color = (255, 255, 255, 255)
w += 1
pixels[x, y] = color
#print out
print "\nAfter learning the network thinks ... Black:"+str(b)+" White:"+str(w)+"\n"
Run Code Online (Sandbox Code Playgroud)
显然,我的实施存在一些问题.上面的代码返回:
原始图像...黑色:21白色:4
学习网络后认为...黑色:25白色:0
如果我尝试使用更大的训练集(我只是测试上面图像中的25个像素用于测试目的),它也会做同样的事情.它返回所有像素在学习后应为黑色.
现在,如果我使用这样的手动训练集:
trainingInputs = [
[0.0,0.0],
[1.0,0.0],
[2.0,0.0],
[0.0,1.0],
[1.0,1.0],
[2.0,1.0],
[0.0,2.0],
[1.0,2.0],
[2.0,2.0]
]
trainingOutputs = [
[0.0],
[1.0],
[1.0],
[0.0],
[1.0],
[0.0],
[0.0],
[0.0],
[1.0]
]
#------------------------------ let's train
for i in range(500):
for j in range(len(trainingOutputs)):
network.train(trainingInputs[j], trainingOutputs[j])
network.learn()
for w in network.weights:
w.delta = 0.0
#------------------------------ let's check
for inputs in trainingInputs:
print network.calculateSingleOutput(inputs)
Run Code Online (Sandbox Code Playgroud)
输出例如:
0.0330125791296 # this should be 0, OK
0.953539182136 # this should be 1, OK
0.971854575477 # this should be 1, OK
0.00046146137467 # this should be 0, OK
0.896699762781 # this should be 1, OK
0.112909223162 # this should be 0, OK
0.00034058462280 # this should be 0, OK
0.0929886299643 # this should be 0, OK
0.940489647869 # this should be 1, OK
Run Code Online (Sandbox Code Playgroud)
换句话说,网络猜测所有像素都是正确的(黑色和白色).如果我使用图像中的实际像素而不是如上所述的硬编码训练集,为什么所有像素都应该是黑色?
我尝试改变隐藏层(最多100个神经元)中的神经元数量,但没有成功.
这是一个功课.
已经有一段时间了,但我确实获得了这个学位的学位,所以我希望其中一些已经卡住了.
据我所知,你用输入集过度沉重中层神经元.也就是说,您的输入集包含10,000个离散输入值(100像素x 100像素); 你试图将这10,000个值编码成10个神经元.这种级别的编码很难(我怀疑这是可能的,但肯定很难); 至少,你需要大量的培训(超过500次运行)才能让它合理地重现.即使中间层有100个神经元,你也会看到一个相对密集的压缩级别(100像素到1个神经元).
至于如何处理这些问题; 好吧,这很棘手.你可以大大增加中间神经元的数量,你会得到合理的效果,但当然需要很长时间训练.但是,我认为可能会有不同的解决方案; 如果可能,您可以考虑使用极坐标而不是笛卡尔坐标作为输入; 输入模式的快速眼球表示高水平的对称性,并且有效地你会看到沿着角坐标具有重复可预测变形的线性模式,它似乎可以很好地编码在少数中间层神经元中.
这个东西很棘手; 寻找模式编码的一般解决方案(正如您的原始解决方案所做的那样)非常复杂,并且通常(即使有大量的中间层神经元)也需要大量的训练过程; 另一方面,一些先进的启发式任务分解和一些问题重新定义(即从笛卡尔坐标转换到极坐标)可以为明确定义的问题集提供良好的解决方案.当然,这是永久的磨擦; 一般的解决方案很难得到,但稍微更具体的解决方案确实非常好.
有趣的东西,无论如何!
| 归档时间: |
|
| 查看次数: |
411 次 |
| 最近记录: |