max*_*mir 6 arrays numpy vectorization scipy binning
我有一个包含 N 个元素的数组(未排序)。我想保留 N 的原始顺序,但不是实际元素,我希望它们具有它们的 bin 编号,其中 N 被分成 m 个相等的 bin(如果 N 可被 m 整除)或几乎相等(N 不能被 m 整除) 值。我需要一个矢量化的解决方案(因为 N 相当大,所以标准的 python 方法效率不高)。scipy 或 numpy 中有什么可以做到这一点的吗?
e.g.
N = [0.2, 1.5, 0.3, 1.7, 0.5]
m = 2
Desired output: [0, 1, 0, 1, 0]
Run Code Online (Sandbox Code Playgroud)
我看过 numpy.histogram,但它没有给我不等距的垃圾箱。
本文列出的是一种基于 NumPy 的向量化方法,其思想是使用以下方法为输入数组的长度创建等距索引np.searchsorted- 这是实现 -
def equal_bin(N, m):
sep = (N.size/float(m))*np.arange(1,m+1)
idx = sep.searchsorted(np.arange(N.size))
return idx[N.argsort().argsort()]
Run Code Online (Sandbox Code Playgroud)
对每个箱进行箱计数的样本运行以验证结果 -
In [442]: N = np.arange(1,94)
In [443]: np.bincount(equal_bin(N, 4))
Out[443]: array([24, 23, 23, 23])
In [444]: np.bincount(equal_bin(N, 5))
Out[444]: array([19, 19, 18, 19, 18])
In [445]: np.bincount(equal_bin(N, 10))
Out[445]: array([10, 9, 9, 10, 9, 9, 10, 9, 9, 9])
Run Code Online (Sandbox Code Playgroud)
这是另一种方法,用于linspace创建可用作索引的等距数字,如下所示 -
def equal_bin_v2(N, m):
idx = np.linspace(0,m,N.size+0.5, endpoint=0).astype(int)
return idx[N.argsort().argsort()]
Run Code Online (Sandbox Code Playgroud)
样本运行 -
In [689]: N
Out[689]: array([ 0.2, 1.5, 0.3, 1.7, 0.5])
In [690]: equal_bin_v2(N,2)
Out[690]: array([0, 1, 0, 1, 0])
In [691]: equal_bin_v2(N,3)
Out[691]: array([0, 1, 0, 2, 1])
In [692]: equal_bin_v2(N,4)
Out[692]: array([0, 2, 0, 3, 1])
In [693]: equal_bin_v2(N,5)
Out[693]: array([0, 3, 1, 4, 2])
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3414 次 |
| 最近记录: |