Blu*_*482 137 python numpy scikit-learn
我尝试加载已保存的SVM模型时出现此错误.我尝试卸载sklearn,NumPy和SciPy,再次重新安装最新版本(使用pip).我仍然收到此错误.为什么?
In [1]: import sklearn; print sklearn.__version__
0.18.1
In [3]: import numpy; print numpy.__version__
1.11.2
In [5]: import scipy; print scipy.__version__
0.18.1
In [7]: import pandas; print pandas.__version__
0.19.1
In [10]: clf = joblib.load('model/trained_model.pkl')
---------------------------------------------------------------------------
RuntimeWarning Traceback (most recent call last)
<ipython-input-10-5e5db1331757> in <module>()
----> 1 clf = joblib.load('sentiment_classification/model/trained_model.pkl')
/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/numpy_pickle.pyc in load(filename, mmap_mode)
573 return load_compatibility(fobj)
574
--> 575 obj = _unpickle(fobj, filename, mmap_mode)
576
577 return obj
/usr/local/lib/python2.7/dist-packages/sklearn/externals/joblib/numpy_pickle.pyc in _unpickle(fobj, filename, mmap_mode)
505 obj = None
506 try:
--> 507 obj = unpickler.load()
508 if unpickler.compat_mode:
509 warnings.warn("The file '%s' has been generated with a "
/usr/lib/python2.7/pickle.pyc in load(self)
862 while 1:
863 key = read(1)
--> 864 dispatch[key](self)
865 except _Stop, stopinst:
866 return stopinst.value
/usr/lib/python2.7/pickle.pyc in load_global(self)
1094 module = self.readline()[:-1]
1095 name = self.readline()[:-1]
-> 1096 klass = self.find_class(module, name)
1097 self.append(klass)
1098 dispatch[GLOBAL] = load_global
/usr/lib/python2.7/pickle.pyc in find_class(self, module, name)
1128 def find_class(self, module, name):
1129 # Subclasses may override this
-> 1130 __import__(module)
1131 mod = sys.modules[module]
1132 klass = getattr(mod, name)
/usr/local/lib/python2.7/dist-packages/sklearn/svm/__init__.py in <module>()
11 # License: BSD 3 clause (C) INRIA 2010
12
---> 13 from .classes import SVC, NuSVC, SVR, NuSVR, OneClassSVM, LinearSVC, \
14 LinearSVR
15 from .bounds import l1_min_c
/usr/local/lib/python2.7/dist-packages/sklearn/svm/classes.py in <module>()
2 import numpy as np
3
----> 4 from .base import _fit_liblinear, BaseSVC, BaseLibSVM
5 from ..base import BaseEstimator, RegressorMixin
6 from ..linear_model.base import LinearClassifierMixin, SparseCoefMixin, \
/usr/local/lib/python2.7/dist-packages/sklearn/svm/base.py in <module>()
6 from abc import ABCMeta, abstractmethod
7
----> 8 from . import libsvm, liblinear
9 from . import libsvm_sparse
10 from ..base import BaseEstimator, ClassifierMixin
__init__.pxd in init sklearn.svm.libsvm (sklearn/svm/libsvm.c:10207)()
RuntimeWarning: numpy.dtype size changed, may indicate binary incompatibility. Expected 96, got 80
Run Code Online (Sandbox Code Playgroud)
更新:好的,按照这里,和
pip uninstall -y scipy scikit-learn
pip install --no-binary scipy scikit-learn
Run Code Online (Sandbox Code Playgroud)
错误现在已经消失,但我仍然不知道为什么它首先出现...
iva*_*eev 139
根据MAINT:沉默Cython关于更改dtype/ufunc大小的警告.- numpy/numpy:
每当您导入针对较旧的numpy编译的scipy(或其他包)时,这些警告都是可见的.
并且检查由Cython插入(因此存在于使用它编译的任何模块中).
简而言之,这些警告在特定情况下应该是良性的numpy
,并且这些消息自从numpy 1.8
(此提交进入的分支)被过滤掉.虽然scikit-learn 0.18.1
编译反对numpy 1.6.1
.
import warnings
warnings.filterwarnings("ignore", message="numpy.dtype size changed")
warnings.filterwarnings("ignore", message="numpy.ufunc size changed")
Run Code Online (Sandbox Code Playgroud)
当然,你可以重新编译从源代码的所有受影响的模块对当地numpy
有pip install --no-binary :all:
¹ ,而不是如果你有球该工具.
更长的故事:补丁的支持者声称应该没有专门的风险numpy
,并且第三方软件包是故意针对旧版本构建的:
[重建当前numpy的一切]不是一个可行的解决方案,当然不应该是必要的.Scipy(许多其他软件包)与numpy的许多版本兼容.因此,当我们分发scipy二进制文件时,我们会根据支持最低的numpy版本(目前为1.5.1)构建它们,并且它们也适用于1.6.x,1.7.x和numpy master.
真正正确的是,当dtypes/ufuncs的大小以打破ABI的方式发生变化时,Cython只会发出警告,否则就会保持沉默.
因此,Cython的开发人员同意信任numpy团队手动维护二进制兼容性,因此我们可以预期使用具有破坏ABI更改的版本将产生特制的异常或其他一些明确的show-stopper.
¹ 以前提供的--no-use-wheel
选项已被删除,因为pip 10.0.0
.
Par*_*n.S 35
这是新numpy版本的问题(1.15.0)
你可以降级numpy,这个问题将得到解决:
sudo pip uninstall numpy
sudo pip install numpy==1.14.5
最后发布了numpy 1.15.1版本,因此修复了警告问题.
sudo pip install numpy == 1.15.1
这工作..
小智 8
我尝试过上述方法,但没有任何效果.但是我通过apt install安装库后,问题就消失了,
对于Python3,
pip3 uninstall -y numpy scipy pandas scikit-learn
sudo apt update
sudo apt install python3-numpy python3-scipy python3-pandas python3-sklearn
Run Code Online (Sandbox Code Playgroud)
对于Python2,
pip uninstall -y numpy scipy pandas scikit-learn
sudo apt update
sudo apt install python-numpy python-scipy python-pandas python-sklearn
Run Code Online (Sandbox Code Playgroud)
希望有所帮助.
小智 6
如果您在anaconda环境中,请使用:
conda update --all
Run Code Online (Sandbox Code Playgroud)
小智 5
只需升级您的numpy模块,现在它是1.15.4。对于窗户
pip install numpy --upgrade
Run Code Online (Sandbox Code Playgroud)