python中每个函数的内存使用情况

liv*_*hak 2 python memory profiling generator

import time
import logging
from functools import reduce

logging.basicConfig(filename='debug.log', level=logging.DEBUG)



def read_large_file(file_object):
    """Uses a generator to read a large file lazily"""

    while True:
        data = file_object.readline()
        if not data:
            break
        yield data


def process_file_1(file_path):
    """Opens a large file and reads it in"""

    try:
        with open(file_path) as fp:
            for line in read_large_file(fp):
                logging.debug(line)
                pass

    except(IOError, OSError):
        print('Error Opening or Processing file')


    def process_file_2(file_path):
        """Opens a large file and reads it in"""

        try:
            with open(path) as file_handler:
                while True:
                    logging.debug(next(file_handler))
        except (IOError, OSError):
            print("Error opening / processing file")
        except StopIteration:
            pass


    if __name__ == "__main__":
        path = "TB_data_dictionary_2016-04-15.csv"

        l1 = []
        for i in range(1,10):
            start = time.clock()
            process_file_1(path)
            end = time.clock()
            diff = (end - start)
            l1.append(diff)

        avg = reduce(lambda x, y: x + y, l1) / len(l1)
        print('processing time (with generators) {}'.format(avg))


        l2 = []
        for i in range(1,10):
            start = time.clock()
            process_file_2(path)
            end = time.clock()
            diff = (end - start)
            l2.append(diff)

        avg = reduce(lambda x, y: x + y, l2) / len(l2)
        print('processing time (with iterators) {}'.format(avg))
Run Code Online (Sandbox Code Playgroud)

程序的输出:

C:\Python34\python.exe C:/pypen/data_structures/generators/generators1.py
processing time (with generators) 0.028033358176432314
processing time (with iterators) 0.02699498330810426
Run Code Online (Sandbox Code Playgroud)

在上面的程序中,我试图测量iterators使用generators. 该文件可在此处获得。使用迭代器读取文件的时间远低于使用生成器读取文件的时间。

我假设,如果我是衡量memroy由函数使用的量process_file_1process_file_2随后的发电机将跑赢迭代器。有没有办法测量python中每个函数的内存使用情况。

Moi*_*dri 6

首先,使用代码的单次迭代来衡量其性能并不是一个好主意。由于系统性能中的任何故障(例如:后台进程、CPU 执行垃圾收集等),您的结果可能会有所不同。您应该检查它是否有相同代码的多次迭代。

要测量代码的性能,请使用timeit模块:

该模块提供了一种简单的方法来计时一小段 Python 代码。它既有一个命令行接口,也有一个可调用的接口。它避免了许多用于测量执行时间的常见陷阱。

检查代码的内存消耗,请使用Memory Profiler

这是一个python模块,用于监控进程的内存消耗以及python程序的内存消耗的逐行分析。