Som*_*ody 5 c algorithm loops newtons-method
C中的这段代码(附在帖子中)使用Newton-Raphson方法在特定区间中找到多项式的根.
对于某些多项式,这段代码可以完美地x^3 + x^2 + x + 1运行,但运算符对于某些多项式来说是无限的x^3 - 6*x^2 + 11*x - 6.也就是说,此代码适用于输入间隔中具有一个或零根的多项式,但如果存在多个根,则它将无限期运行.
如果有人找到解决方案,请告诉我.我在代码中写了一些评论来引导读者,但如果有人发现很难理解,可以在评论中提问,我会解释一下.
#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<ctype.h>
int check(float num) //just a function to check for the correct input
{
char c;
scanf("%c",&c);
if(isalpha((int)c))
printf("you entered an alphabet\n");
else
printf("you entered a character, please retry\n");
return 0;
}
float func(float *p,int order,double x) //calculates the value of the function required in the formmula in main
{
double fc=0.0;
int i;
for(i=0;i<=order;i++)
{
fc=fc+(double)(*p)*pow(x,(double)i);
p++;
}
return fc;
}
float derv(float *q,int order,double x) //calculates the derivative of the function required in the formmula in main
{
double dv=0.0,i;
for(i=1;i<=order;i++)
{
dv=dv+(double)(*q)*(pow(x,(double)(i-1)))*(double)i;
q++;
}
return dv;
}
int main()
{
float coeff[1000];
int order,count=0,i,j=0;
char ch;
float a,b;
double val[5];
printf("roots of polynomial using newton and bisection method\n");
printf("enter the order of the equation\n");
while(scanf("%d",&order)!=1)
{
printf("invalid input.please retry\n");
while(getchar()!='\n'){}
}
printf("enter the cofficients\n");
for(i=0;i<=order;i++)
{
printf("for x^%d :",order-i);
printf("\n");
while(scanf("%f",&coeff[i])!=1)
{
check(coeff[i]);
}
}
while(getchar()!='\n'){} //this clears the buffer accumulated upto pressing enter
printf("the polynomial you entered is :\n");
for(i=0;i<=order;i++)
{
printf(" %fx^%d ",coeff[i],order-i);
}
printf("\n");
//while(getchar()!='\n'){};
/* fflush(stdout);
fflush(stdin);*/
printf("plese enter the interval domain [a,b]\n");
printf("enter a and b:\n");
scanf("%f %f",&a,&b);
while(getchar()!='\n'){}
printf("the entered interval is [%f,%f]",a,b);
fflush(stdout);
fflush(stdin);
//this array is used to choose a different value of x to apply newton's formula recurcively in an interval to scan it roperly for 3 roots
val[0]=(double)b;
val[1]=(double)a;
val[2]=(double)((a+b)/2);
double t,x=val[0],x1=0.0,roots[10];
while(1)
{
t=x1;
x1=(x-(func(&coeff[0],order,x)/derv(&coeff[0],order,x))); //this is the newton's formula
x=x1;
if((fabs(t - x1))<=0.0001 && count!=0)
{
roots[j]=x;
j++;
x=val[j]; // every time a root is encountered this stores the root in roots array and runs the loop again with different value of x to find other roots
t=0.0;
x1=0.0;
count=(-1);
if(j==3)
break;
}
count++;
}
printf("the roots are = \n");
int p=0;
for(j=0;j<3;j++)
{
if(j==0 && roots[j]>=a && roots[j]<=b)
{
printf(" %f ",roots[j]);
p++;
}
if(fabs(roots[j]-roots[j-1])>0.5 && j!=0 && roots[j]>=a && roots[j]<=b)
{
printf(" %f ",roots[j]);
p++;
}
}
if(p==0)
printf("Sorry,no roots are there in this interval \n");
return 0;
}
Run Code Online (Sandbox Code Playgroud)
您没有正确计算函数或导数,因为您以相反的顺序存储系数,但您没有考虑到这一点.
当您打印出公式时,您会通过打印来解释它order-i:
printf(" %fx^%d ",coeff[i],order-i);
Run Code Online (Sandbox Code Playgroud)
所以你需要做同样的事情func:
fc=fc+(double)(*p)*pow(x,(double)(order-i));
Run Code Online (Sandbox Code Playgroud)
并且derv:
dv=dv+(double)(*q)*(pow(x,(double)((order-i)-1)))*(double)(order-i);
Run Code Online (Sandbox Code Playgroud)
它对多项式工作的原因x^3 + x^2 + x + 1是因为在那个例子中所有的系数是相同的,所以如果你向前或向后读取数组,它将没有什么区别.
此外,正如Johnathon Leffler在评论中所提到的,您可能需要考虑该方法无法收敛的其他原因.您可以为循环设置最大迭代次数,如果超过最大值则突破.
调试这样的东西(当然除了使用调试器)之外的一个好方法是添加一些额外的printf语句来显示正在计算的值.您可以通过在Google搜索中输入等式来检查输出,它将提供该功能的交互式图表.
| 归档时间: |
|
| 查看次数: |
901 次 |
| 最近记录: |