CPU*_*Fry 8 lisp scheme the-little-schemer continuation-passing racket
我无法理解Scheme中收集器函数的使用.我正在使用"The Little Schemer"一书(Daniel P. Friedman和Matthias Felleisen).一个有一些解释的综合例子对我有很大帮助.使用收集器函数的函数示例如下:
(define identity
(lambda (l col)
(cond
((null? l) (col '()))
(else (identity
(cdr l)
(lambda (newl)
(col (cons (car l) newl))))))))
Run Code Online (Sandbox Code Playgroud)
......有一个例子叫做存在(identity '(a b c) self)和self-function存在(define self (lambda (x) x)).该identity函数返回给定的列表l,因此给定调用的输出将是(a b c).使用的确切语言是R5RS Legacy语言.
给定如何在定义中identity定义那些"收集器"函数,调用
(identity xs col)
Run Code Online (Sandbox Code Playgroud)
对于任何列表xs和一些"收集器"功能col,相当于调用
(col xs)
Run Code Online (Sandbox Code Playgroud)
所以相同的列表将被"返回",即传递给它的参数"collector"/ continuation函数col.那就解释了它的名字identity.
为了比较,a reverse可以编码为
(define reverse ; to be called as e.g. (reverse l display)
(lambda (l col)
(cond
((null? l) (col '())) ; a reversed empty list is empty
(else (reverse (cdr l) ; a reversed (cdr l) is newl --
(lambda (newl) ; what shall I do with it when it's ready?
(col ; append (car l) at its end and let col
(append newl ; deal with it!
(list (car l))))))))))
Run Code Online (Sandbox Code Playgroud)
这种编程风格称为延续传递风格:每个函数都传递一个"延续",假定它将传递其余计算的结果,以便原始的延续/收集器函数将传递给最终结果最终.每个收藏家的说法代表了未来的"结果",它将接收和收集功能本身,然后指定它是如何被处理,然后.
不要被术语搞糊涂:这些函数不是函数捕获的"延续" call/cc,它们是正常的Scheme函数,代表"接下来要做什么".
该定义可以理解为
identity :
to transform a list xs
with a collector function col,
is
| to call (col xs) , if xs is empty, or
| to transform (cdr xs)
with a new collector function col2
such that
(col2 r) = (col (cons (car xs) r)) , otherwise.
Run Code Online (Sandbox Code Playgroud)
(或者我们可以用伪代码写这个,如)
(identity list col) =
| empty? list -> (col list)
| match? list (x . xs) -> (identity xs col2)
where
(col2 r) = (col (cons x r))
Run Code Online (Sandbox Code Playgroud)
col2r通过传递(cons x r)给前一个处理程序来 处理它的参数col.这意味着r转化为(cons x r),但不是作为一个值返回,而是将其输入以col进行进一步处理.因此,我们(cons x r)通过将新值传递给前一个"收集器"来"返回" 它.
示例调用,如图所示:
(identity (list 1 2 3) display)
= (identity (list 2 3) k1)
; k1 = (lambda (r1) (display (cons 1 r1))) = display ° {cons 1}
= (identity (list 3) k2)
; k2 = (lambda (r2) (k1 (cons 2 r2))) = k1 ° {cons 2}
= (identity (list ) k3)
; k3 = (lambda (r3) (k2 (cons 3 r3))) = k2 ° {cons 3}
= (k3 '()) ; (((display ° {cons 1}) ° {cons 2}) ° {cons 3}) []
= (k2 (cons 3 '())) ; ((display ° {cons 1}) ° {cons 2}) [3]
= (k1 (cons 2 (list 3))) ; (display ° {cons 1}) [2,3]
= (display (cons 1 (list 2 3))) ; display [1,2,3]
= (display (list 1 2 3))
Run Code Online (Sandbox Code Playgroud)
更新:在模式匹配的伪代码中,我一直喜欢使用,我们可以写
identity [] col = col []
identity [a, ...d] col = identity d ( newl => col [a, ...newl] )
Run Code Online (Sandbox Code Playgroud)
和
reverse [] col = col []
reverse [a, ...d] col = reverse d ( newl => col [...newl, a] )
Run Code Online (Sandbox Code Playgroud)
希望在视觉上非常明显,几乎不需要解释!
| 归档时间: |
|
| 查看次数: |
725 次 |
| 最近记录: |