ValueError:类的数量必须大于一(python)

Vij*_*hah 5 classification svm python-2.7 scikit-learn

传入x,yfit,我收到以下错误:

Traceback(最近一次调用最后一次):

文件"C:/Classify/classifier.py",第95行,in

train_avg,test_avg,cms = train_model(X,y,"ceps",plot = True)
文件"C:/Classify/classifier.py",第47行,在train_model中

clf.fit(X_train,y_train)文件"C:\ Python27\lib\site-packages\sklearn\svm\base.py",第676行,in fit raise ValueError("类的数量必须大于"ValueError :类的数量必须大于一.

以下是我的代码:

def train_model(X, Y, name, plot=False):
"""
    train_model(vector, vector, name[, plot=False])

    Trains and saves model to disk.
"""
labels = np.unique(Y)

cv = ShuffleSplit(n=len(X), n_iter=1, test_size=0.3, indices=True, random_state=0)

train_errors = []
test_errors = []

scores = []
pr_scores = defaultdict(list)
precisions, recalls, thresholds = defaultdict(list), defaultdict(list), defaultdict(list)

roc_scores = defaultdict(list)
tprs = defaultdict(list)
fprs = defaultdict(list)

clfs = []  # for the median

cms = []

for train, test in cv:
    X_train, y_train = X[train], Y[train]
    X_test, y_test = X[test], Y[test]

    clf = LogisticRegression()
    clf.fit(X_train, y_train)
    clfs.append(clf)
Run Code Online (Sandbox Code Playgroud)

小智 17

您可能在训练集中只有一个唯一的类标签.如上所述,您需要在数据集中至少有两个唯一的类.例如,您可以运行np.unique(y)以查看数据集中的唯一类标签.