Ger*_*see 5 python numpy tensorflow
我正在使用张量流模型,就像虹膜预测示例中所描述的那样。因此我没有会话对象。现在我想将标签转换为 numpy 数组.eval()。没有会话就会出现错误。
Traceback (most recent call last):
File "myfile.py", line 273, in <module>
tf.app.run()
File "/usr/local/lib/python3.4/site-packages/tensorflow/python/platform/app.py", line 30, in run
sys.exit(main(sys.argv))
File "myfile.py", line 270, in main
train_and_eval()
File "myfile.py", line 258, in train_and_eval
label.eval()
File "/usr/local/lib/python3.4/site-packages/tensorflow/python/framework/ops.py", line 559, in eval
return _eval_using_default_session(self, feed_dict, self.graph, session)
File "/usr/local/lib/python3.4/site-packages/tensorflow/python/framework/ops.py", line 3642, in _eval_using_default_session
raise ValueError("Cannot evaluate tensor using `eval()`: No default "
ValueError: Cannot evaluate tensor using `eval()`: No default session is registered. Use `with sess.as_default()` or pass an explicit session to `eval(session=sess)`
Run Code Online (Sandbox Code Playgroud)
是否有可能访问/获取后台使用的模型的会话?或者是否有其他可能性将张量转换为 numpy 数组?
如果我创建一个新会话,那么张量流似乎会移动到该会话,但无法访问该变量。一条蟒蛇print()显示如何将变量解析到这个新会话?
网络的另一部分运行良好 - 只是将张量转换为 numpy 数组这个特殊的东西
COLUMNS = ["col1", "col2", "col3", "target"]
LABEL_COLUMN = "target"
CATEGORICAL_COLUMNS = ["col1", "col2", "col3"]
def build_estimator(model_dir):
col1 = tf.contrib.layers.sparse_column_with_hash_bucket(
"col1", hash_bucket_size=10000)
col2........
wide_columns = [col1, col2, col3]
deep_columns = [
tf.contrib.layers.embedding_column(col1, dimension=7),
tf.contrib.layers.embedding_column(col2, dimension=7),
tf.contrib.layers.embedding_column(col3, dimension=7)
]
m = tf.contrib.learn.DNNLinearCombinedClassifier(...)
return m
def input_fn(file_names, batch_size):
...
label = tf.string_to_number(examples_dict[LABEL_COLUMN], out_type=tf.int32)
return feature_cols, label
def train_and_eval():
model_dir = "./model/"
print(model_dir)
m = build_estimator(model_dir)
m.fit(input_fn=lambda: input_fn(train_file_name, batch_size), steps=steps)
results = m.evaluate(input_fn=lambda: input_fn(test_file_name, batch_size),
steps=1)
pred_m = m.predict(input_fn=lambda: input_fn(test_file_name, batch_size))
sess = tf.InteractiveSession()
with sess.as_default():
print("Is a session there?")
_, label = input_fn(test_file_name, batch_size)
label.eval()
print(label)
def main(_):
train_and_eval()
if __name__ == "__main__":
tf.app.run()
Run Code Online (Sandbox Code Playgroud)
新会话从代码片段的末尾开始:
sess = tf.InteractiveSession()
with sess.as_default():
print("Is a session there?")
_, label = input_fn(test_file_name, batch_size)
label.eval()
print(label)
Run Code Online (Sandbox Code Playgroud)
您需要一个会话,并且需要先初始化变量,然后才能访问它们:
with Session() as sess:
sess.run(tf.global_variables_initializer())
...
label_numpy = label.eval()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
20839 次 |
| 最近记录: |