kev*_*vad 6 python scipy sparse-matrix
我想从稀疏矩阵中删除对角元素.由于矩阵是稀疏的,因此一旦移除就不应存储这些元素.
Scipy提供了一种设置对角元素值的方法:setdiag
如果我使用lil_matrix尝试它,它的工作原理:
>>> a = np.ones((2,2))
>>> c = lil_matrix(a)
>>> c.setdiag(0)
>>> c
<2x2 sparse matrix of type '<type 'numpy.float64'>'
with 2 stored elements in LInked List format>
Run Code Online (Sandbox Code Playgroud)
但是使用csr_matrix时,似乎不会从存储中删除对角元素:
>>> b = csr_matrix(a)
>>> b
<2x2 sparse matrix of type '<type 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>
>>> b.setdiag(0)
>>> b
<2x2 sparse matrix of type '<type 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>
>>> b.toarray()
array([[ 0., 1.],
[ 1., 0.]])
Run Code Online (Sandbox Code Playgroud)
通过密集阵列,我们当然有:
>>> csr_matrix(b.toarray())
<2x2 sparse matrix of type '<type 'numpy.float64'>'
with 2 stored elements in Compressed Sparse Row format>
Run Code Online (Sandbox Code Playgroud)
这是有意的吗?如果是这样,是否由于csr矩阵的压缩格式?除了从稀疏到密集再到稀疏之外,还有其他解决方法吗?
简单地将元素设置为0不会改变csr
矩阵的稀疏性.你必须申请eliminate_zeros
.
In [807]: a=sparse.csr_matrix(np.ones((2,2)))
In [808]: a
Out[808]:
<2x2 sparse matrix of type '<class 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>
In [809]: a.setdiag(0)
In [810]: a
Out[810]:
<2x2 sparse matrix of type '<class 'numpy.float64'>'
with 4 stored elements in Compressed Sparse Row format>
In [811]: a.eliminate_zeros()
In [812]: a
Out[812]:
<2x2 sparse matrix of type '<class 'numpy.float64'>'
with 2 stored elements in Compressed Sparse Row format>
Run Code Online (Sandbox Code Playgroud)
由于更改csr矩阵的稀疏性相对较为昂贵,因此可以将值更改为0而不会更改稀疏度.
In [829]: %%timeit a=sparse.csr_matrix(np.ones((1000,1000)))
...: a.setdiag(0)
100 loops, best of 3: 3.86 ms per loop
In [830]: %%timeit a=sparse.csr_matrix(np.ones((1000,1000)))
...: a.setdiag(0)
...: a.eliminate_zeros()
SparseEfficiencyWarning: Changing the sparsity structure of a csr_matrix is expensive. lil_matrix is more efficient.
10 loops, best of 3: 133 ms per loop
In [831]: %%timeit a=sparse.lil_matrix(np.ones((1000,1000)))
...: a.setdiag(0)
100 loops, best of 3: 14.1 ms per loop
Run Code Online (Sandbox Code Playgroud)
归档时间: |
|
查看次数: |
2167 次 |
最近记录: |