Mar*_*iak 5 java json apache-spark apache-spark-2.0
拥有Dataset<Row>单列json字符串:
+--------------------+
| value|
+--------------------+
|{"Context":"00AA0...|
+--------------------+
Run Code Online (Sandbox Code Playgroud)
Json样本:
{"Context":"00AA00AA","MessageType":"1010","Module":"1200"}
Run Code Online (Sandbox Code Playgroud)
我怎样才能最有效地获得Dataset<Row>如下所示:
+--------+-----------+------+
| Context|MessageType|Module|
+--------+-----------+------+
|00AA00AA| 1010| 1200|
+--------+-----------+------+
Run Code Online (Sandbox Code Playgroud)
我正在流处理这些数据,我知道当我从文件中读取时,spark可以通过他自己做到这一点:
spark
.readStream()
.schema(MyPojo.getSchema())
.json("src/myinput")
Run Code Online (Sandbox Code Playgroud)
但现在我正在读取kafka的数据,它以另一种形式提供数据.我知道我可以使用像Gson这样的解析器,但我想让火花为我做.
尝试这个示例。
public class SparkJSONValueDataset {
public static void main(String[] args) {
SparkSession spark = SparkSession
.builder()
.appName("SparkJSONValueDataset")
.config("spark.sql.warehouse.dir", "/file:C:/temp")
.master("local")
.getOrCreate();
//Prepare data Dataset<Row>
List<String> data = Arrays.asList("{\"Context\":\"00AA00AA\",\"MessageType\":\"1010\",\"Module\":\"1200\"}");
Dataset<Row> df = spark.createDataset(data, Encoders.STRING()).toDF().withColumnRenamed("_1", "value");
df.show();
//convert to Dataset<String> and Read
Dataset<String> df1 = df.as(Encoders.STRING());
Dataset<Row> df2 = spark.read().json(df1.javaRDD());
df2.show();
spark.stop();
}
}
Run Code Online (Sandbox Code Playgroud)