y.s*_*hyk 14 python summary tensorflow
我有两组不同的摘要.每批收集一个,每个时期收集一个.我如何分别用merge_all_summaries(key='???')这两组收集摘要?手动执行它总是一个选项,但似乎有更好的方法.
我认为它应该如何工作的插图:
# once per batch
tf.scalar_summary("loss", graph.loss)
tf.scalar_summary("batch_acc", batch_accuracy)
# once per epoch
gradients = tf.gradients(graph.loss, [W, D])
tf.histogram_summary("embedding/W", W, collections='per_epoch')
tf.histogram_summary("embedding/D", D, collections='per_epoch')
tf.merge_all_summaries() # -> (MergeSummary...) :)
tf.merge_all_summaries(key='per_epoch') # -> NONE :(
Run Code Online (Sandbox Code Playgroud)
y.s*_*hyk 28
问题解决了.collections摘要的参数应该是一个列表.解:
# once per batch
tf.scalar_summary("loss", graph.loss)
tf.scalar_summary("batch_acc", batch_accuracy)
# once per epoch
tf.histogram_summary("embedding/W", W, collections=['per_epoch'])
tf.histogram_summary("embedding/D", D, collections=['per_epoch'])
tf.merge_all_summaries() # -> (MergeSummary...) :)
tf.merge_all_summaries(key='per_epoch') # -> (MergeSummary...) :)
Run Code Online (Sandbox Code Playgroud)
编辑.TF的句法变化:
# once per batch
tf.summary.scalar("loss", graph.loss)
tf.summary.scalar("batch_acc", batch_accuracy)
# once per epoch
tf.summary.histogram("embedding/W", W, collections=['per_epoch'])
tf.summary.histogram("embedding/D", D, collections=['per_epoch'])
tf.summary.merge_all() # -> (MergeSummary...) :)
tf.summary.merge_all(key='per_epoch') # -> (MergeSummary...) :)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
3423 次 |
| 最近记录: |