O. *_*olm 9 python image tensorflow
我是张力流的新手,我在这里遇到了一个恼人的问题.
我正在制作一个程序,用于加载tf.WholeFileReader.read(image_name_queue)从tfrecord文件中获取的图像"原始数据" ,然后对其进行解码tf.image.decode_jpeg(raw_data, channels=3),然后将其传递给一个矢量化它的函数.
主要代码
logging.info('setting up folder')
create_image_data_folder()
save_configs()
logging.info('creating graph')
filename_queue = tf.train.string_input_producer([
configs.TFRECORD_IMAGES_PATH],
num_epochs=1)
image_tensor, name_tensor = read_and_decode(filename_queue)
image_batch_tensor, name_batch_tensor = tf.train.shuffle_batch(
[image_tensor, name_tensor],
configs.BATCH_SIZE,
1000 + 3 * configs.BATCH_SIZE,
min_after_dequeue=1000)
image_embedding_batch_tensor = configs.IMAGE_EMBEDDING_FUNCTION(image_batch_tensor)
init = tf.initialize_all_variables()
init_local = tf.initialize_local_variables()
logging.info('starting session')
with tf.Session().as_default() as sess:
sess.run(init)
sess.run(init_local)
tf.train.start_queue_runners()
logging.info('vectorizing')
data_points = []
for _ in tqdm(xrange(get_n_batches())):
name_batch = sess.run(name_batch_tensor)
image_embedding_batch = sess.run(image_embedding_batch_tensor)
for vector, name in zip(list(image_embedding_batch), name_batch):
data_points.append((vector, name))
logging.info('saving')
save_pkl_file(data_points, 'vectors.pkl')
Run Code Online (Sandbox Code Playgroud)
read_and_decode函数
def read_and_decode(tfrecord_file_queue):
logging.debug('reading image and decodes it from queue')
reader = tf.TFRecordReader()
_, serialized_example = reader.read(tfrecord_file_queue)
features = tf.parse_single_example(serialized_example,
features={
'image': tf.FixedLenFeature([], tf.string),
'name': tf.FixedLenFeature([], tf.string)
}
)
image = process_image_data(features['image'])
return image, features['name']
Run Code Online (Sandbox Code Playgroud)
代码正在运行,但最终它遇到了一个错误的非jpeg文件,并且引发了错误并且程序停止运行.
错误
InvalidArgumentError (see above for traceback): Invalid JPEG data, size 556663
Run Code Online (Sandbox Code Playgroud)
我想跳过这些"错误".我试着用try和包围代码except.
新代码
for _ in tqdm(xrange(get_n_batches())):
try:
name_batch = sess.run(name_batch_tensor)
image_embedding_batch = sess.run(image_embedding_batch_tensor)
for vector, name in zip(list(image_embedding_batch), name_batch):
data_points.append((vector, name))
except Exception as e:
logging.warning('error occured: {}'.format(e))
Run Code Online (Sandbox Code Playgroud)
当我再次运行程序时出现相同的错误,try并且except 似乎没有处理错误.
我该如何处理这些异常?另外,如果你看到我误解了张量流"结构",请提及.
小智 0
问题是,使用“ except Exception”,您只能捕获从泛型类 Exception 继承的异常,而不是所有异常。如果你想从张量流中捕获特定的异常,你可以尝试:
try:
# Your code
except tf.errors.InvalidArgumentError as e
logging.warning('error occured: {}'.format(e))
Run Code Online (Sandbox Code Playgroud)
如果你想捕获任何异常:
except: # Catch all exception
logger.exception('error occured")
Run Code Online (Sandbox Code Playgroud)