如何将Tensorflow张量尺寸(形状)作为int值?

sta*_*010 70 python artificial-intelligence machine-learning tensorflow

假设我有一个Tensorflow张量.如何将张量的尺寸(形状)作为整数值?我知道有两种方法,tensor.get_shape()以及tf.shape(tensor),但我不能让形状值作为整int32数值.

例如,下面我创建了一个二维张量,我需要得到行数和列数,int32以便我可以调用reshape()以创建一个形状的张量(num_rows * num_cols, 1).但是,该方法tensor.get_shape()返回值作为Dimension类型,而不是int32.

import tensorflow as tf
import numpy as np

sess = tf.Session()    
tensor = tf.convert_to_tensor(np.array([[1001,1002,1003],[3,4,5]]), dtype=tf.float32)

sess.run(tensor)    
# array([[ 1001.,  1002.,  1003.],
#        [    3.,     4.,     5.]], dtype=float32)

tensor_shape = tensor.get_shape()    
tensor_shape
# TensorShape([Dimension(2), Dimension(3)])    
print tensor_shape    
# (2, 3)

num_rows = tensor_shape[0] # ???
num_cols = tensor_shape[1] # ???

tensor2 = tf.reshape(tensor, (num_rows*num_cols, 1))    
# Traceback (most recent call last):
#   File "<stdin>", line 1, in <module>
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/ops/gen_array_ops.py", line 1750, in reshape
#     name=name)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/op_def_library.py", line 454, in apply_op
#     as_ref=input_arg.is_ref)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/ops.py", line 621, in convert_to_tensor
#     ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 180, in _constant_tensor_conversion_function
#     return constant(v, dtype=dtype, name=name)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/constant_op.py", line 163, in constant
#     tensor_util.make_tensor_proto(value, dtype=dtype, shape=shape))
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 353, in make_tensor_proto
#     _AssertCompatible(values, dtype)
#   File "/usr/local/lib/python2.7/site-packages/tensorflow/python/framework/tensor_util.py", line 290, in _AssertCompatible
#     (dtype.name, repr(mismatch), type(mismatch).__name__))
# TypeError: Expected int32, got Dimension(6) of type 'Dimension' instead.
Run Code Online (Sandbox Code Playgroud)

yue*_*ngz 111

要将形状作为整数列表,请执行tensor.get_shape().as_list().

要完成tf.shape()通话,请尝试tensor2 = tf.reshape(tensor, tf.TensorShape([num_rows*num_cols, 1])).或者您可以直接tensor2 = tf.reshape(tensor, tf.TensorShape([-1, 1]))在其第一维可以推断的地方进行.

  • 试试`tensor.get_shape().as_list()` (3认同)
  • 为完整起见,此代码有效:`num_rows,num_cols = x.get_shape().as_list()` (2认同)

小智 29

另一种解决方法是这样的:

tensor_shape[0].value
Run Code Online (Sandbox Code Playgroud)

这将返回Dimension对象的int值.


Ten*_*ort 8

2.0 兼容答案:在 中Tensorflow 2.x (2.1),您可以获得张量的尺寸(形状)作为整数值,如下面的代码所示:

方法一(使用tf.shape

import tensorflow as tf
c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
Shape = c.shape.as_list()
print(Shape)   # [2,3]
Run Code Online (Sandbox Code Playgroud)

方法2(使用tf.get_shape()

import tensorflow as tf
c = tf.constant([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]])
Shape = c.get_shape().as_list()
print(Shape)   # [2,3]
Run Code Online (Sandbox Code Playgroud)


Ann*_*nna 5

对于二维张量,可以使用以下代码将行和列的数量获取为int32:

rows, columns = map(lambda i: i.value, tensor.get_shape())
Run Code Online (Sandbox Code Playgroud)

  • 非常优雅。这如何添加到已经提供的答案中? (2认同)