Geo*_*Liu 5 python dataframe pandas
我有以下格式的字典“ my_dict”:
{'l1':{'c1': {'a': 0, 'b': 1, 'c': 2},
'c2': {'a': 3, 'b': 4, 'c': 5}},
'l2':{'c1': {'a': 0, 'b': 1, 'c': 2},
'c2': {'a': 3, 'b': 4, 'c': 5}}
}
Run Code Online (Sandbox Code Playgroud)
目前,我正在使用pd.DataFrame.from_dict(my_dict, orient='index')并获得像这样的df:
c2 c1
l1 {u'a': 3, u'c': 5, u'b': 4} {u'a': 0, u'c': 2, u'b': 1}
l2 {u'a': 3, u'c': 5, u'b': 4} {u'a': 0, u'c': 2, u'b': 1}
Run Code Online (Sandbox Code Playgroud)
但是,我想要的是l1 / l2和c2 / c3作为索引,而a / b / c作为列。
像这样:
a b c
l1 c1 0 1 2
c2 3 4 5
l2 c1 0 1 2
c2 3 4 5
Run Code Online (Sandbox Code Playgroud)
最好的方法是什么?
考虑使用字典理解来构建具有元组键的字典。然后,使用pandas' MultiIndex.from_tuples。以下ast用于从字符串重建原始字典(忽略最后的步骤)。
import pandas as pd
import ast
origDict = ast.literal_eval("""
{'l1':{'c1': {'a': 0, 'b': 1, 'c': 2},
'c2': {'a': 3, 'b': 4, 'c': 5}},
'l2':{'c1': {'a': 0, 'b': 1, 'c': 2},
'c2': {'a': 3, 'b': 4, 'c': 5}}
}""")
# DICTIONARY COMPREHENSION
newdict = {(k1, k2):v2 for k1,v1 in origDict.items() \
for k2,v2 in origDict[k1].items()}
print(newdict)
# {('l1', 'c2'): {'c': 5, 'a': 3, 'b': 4},
# ('l2', 'c1'): {'c': 2, 'a': 0, 'b': 1},
# ('l1', 'c1'): {'c': 2, 'a': 0, 'b': 1},
# ('l2', 'c2'): {'c': 5, 'a': 3, 'b': 4}}
# DATA FRAME ASSIGNMENT
df = pd.DataFrame([newdict[i] for i in sorted(newdict)],
index=pd.MultiIndex.from_tuples([i for i in sorted(newdict.keys())]))
print(df)
# a b c
# l1 c1 0 1 2
# c2 3 4 5
# l2 c1 0 1 2
# c2 3 4 5
Run Code Online (Sandbox Code Playgroud)