我已经获得了3d高斯分布的均值和sigma,然后我想用python代码绘制3d分布,并获得分布图。
小智 8
这是基于mpl_toolkits的文档和基于scipy multinormal pdf的SO答案:
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
from scipy.stats import multivariate_normal
x, y = np.mgrid[-1.0:1.0:30j, -1.0:1.0:30j]
# Need an (N, 2) array of (x, y) pairs.
xy = np.column_stack([x.flat, y.flat])
mu = np.array([0.0, 0.0])
sigma = np.array([.5, .5])
covariance = np.diag(sigma**2)
z = multivariate_normal.pdf(xy, mean=mu, cov=covariance)
# Reshape back to a (30, 30) grid.
z = z.reshape(x.shape)
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(x,y,z)
#ax.plot_wireframe(x,y,z)
plt.show()
Run Code Online (Sandbox Code Playgroud)
参考:-
| 归档时间: |
|
| 查看次数: |
11237 次 |
| 最近记录: |