Eda*_*ame 17 python python-2.7 pandas pyspark spark-dataframe
我有一个熊猫数据框my_df,并my_df.dtypes给我们:
ts int64
fieldA object
fieldB object
fieldC object
fieldD object
fieldE object
dtype: object
Run Code Online (Sandbox Code Playgroud)
然后我尝试通过以下操作将pandas数据帧my_df转换为spark数据框:
spark_my_df = sc.createDataFrame(my_df)
Run Code Online (Sandbox Code Playgroud)
但是,我收到以下错误:
ValueErrorTraceback (most recent call last)
<ipython-input-29-d4c9bb41bb1e> in <module>()
----> 1 spark_my_df = sc.createDataFrame(my_df)
2 spark_my_df.take(20)
/usr/local/spark-latest/python/pyspark/sql/session.py in createDataFrame(self, data, schema, samplingRatio)
520 rdd, schema = self._createFromRDD(data.map(prepare), schema, samplingRatio)
521 else:
--> 522 rdd, schema = self._createFromLocal(map(prepare, data), schema)
523 jrdd = self._jvm.SerDeUtil.toJavaArray(rdd._to_java_object_rdd())
524 jdf = self._jsparkSession.applySchemaToPythonRDD(jrdd.rdd(), schema.json())
/usr/local/spark-latest/python/pyspark/sql/session.py in _createFromLocal(self, data, schema)
384
385 if schema is None or isinstance(schema, (list, tuple)):
--> 386 struct = self._inferSchemaFromList(data)
387 if isinstance(schema, (list, tuple)):
388 for i, name in enumerate(schema):
/usr/local/spark-latest/python/pyspark/sql/session.py in _inferSchemaFromList(self, data)
318 schema = reduce(_merge_type, map(_infer_schema, data))
319 if _has_nulltype(schema):
--> 320 raise ValueError("Some of types cannot be determined after inferring")
321 return schema
322
ValueError: Some of types cannot be determined after inferring
Run Code Online (Sandbox Code Playgroud)
有谁知道上述错误是什么意思?谢谢!
Gre*_*ogy 20
为了推断字段类型,PySpark查看每个字段中的非none记录.如果某个字段只有None记录,则PySpark无法推断该类型并会引发该错误.
手动定义架构将解决该问题
>>> from pyspark.sql.types import StructType, StructField, StringType
>>> schema = StructType([StructField("foo", StringType(), True)])
>>> df = spark.createDataFrame([[None]], schema=schema)
>>> df.show()
+----+
|foo |
+----+
|null|
+----+
Run Code Online (Sandbox Code Playgroud)
Aka*_*all 11
为了解决这个问题,您可以提供自己定义的架构。
例如:
要重现错误:
>>> df = spark.createDataFrame([[None, None]], ["name", "score"])
Run Code Online (Sandbox Code Playgroud)
要修复错误:
>>> from pyspark.sql.types import StructType, StructField, StringType, DoubleType
>>> schema = StructType([StructField("name", StringType(), True), StructField("score", DoubleType(), True)])
>>> df = spark.createDataFrame([[None, None]], schema=schema)
>>> df.show()
+----+-----+
|name|score|
+----+-----+
|null| null|
+----+-----+
Run Code Online (Sandbox Code Playgroud)
我遇到了同样的问题,如果您不需要空列,您可以简单地将它们从 pandas 数据框中删除,然后再导入到 Spark:
my_df = my_df.dropna(axis='columns', how='all') # Drops columns with all NA values
spark_my_df = sc.createDataFrame(my_df)
Run Code Online (Sandbox Code Playgroud)
如果您使用的是RDD[Row].toDF()monkey-patched 方法,您可以在推断类型时增加样本比率以检查超过 100 条记录:
# Set sampleRatio smaller as the data size increases
my_df = my_rdd.toDF(sampleRatio=0.01)
my_df.show()
Run Code Online (Sandbox Code Playgroud)
假设您的 RDD 中的所有字段中都有非空行,那么当您将其增加到sampleRatio1.0时,将更有可能找到它们。