我有以下数据框df:
  v1 v2 v3 v4
1  1  5  7  4
2  2  6 10  3
我想获得以下数据帧df2乘法列v1*v3和v2*v4:
  v1 v2 v3 v4 v1v3 v2v4
1  1  5  7  4    7   20
2  2  6 10  3   20   18
我该怎么做dplyr呢?用mutate_each?
我需要一个可以推广到大量变量而不仅仅是4(v1到v4)的解决方案.这是生成示例的代码:
v1 <- c(1, 2)
v2 <- c(5,6)
v3 <- c(7, 10)
v4 <- c(4, 3)
df <- data.frame(v1, v2, v3, v4)
v1v3 <- c(v1 * v3)
v2v4 <- c(v2 * v4)
df2 <- cbind(df, v1v3, v2v4)
lee*_*sej 21
你真的很亲密.
df2 <- 
    df %>% 
    mutate(v1v3 = v1 * v3,
           v2v4 = v2 * v4)
这么简单的语言吧?
有关更多精彩技巧,请参阅此处.
编辑:感谢@Facottons指向这个答案:https://stackoverflow.com/a/34377242/5088194 ,这是一个解决这个问题的整洁方法.它使得人们不必在每个新列所需的硬编码中写入一行.虽然它比Base R方法更冗长,但逻辑至少更直接透明/可读.值得注意的是,必须存在至少一半的行,因为这种方法的列有效.
# prep the product column names (also acting as row numbers)
df <- 
    df %>%
    mutate(prod_grp = paste0("v", row_number(), "v", row_number() + 2)) 
# converting data to tidy format and pairing columns to be multiplied together.
tidy_df <- 
    df %>%
    gather(column, value, -prod_grp) %>% 
    mutate(column = as.numeric(sub("v", "", column)),
           pair = column - 2) %>% 
    mutate(pair = if_else(pair < 1, pair + 2, pair))
# summarize the products for each column
prod_df <- 
    tidy_df %>% 
    group_by(prod_grp, pair) %>% 
    summarize(val = prod(value)) %>% 
    spread(prod_grp, val) %>% 
    mutate(pair = paste0("v", pair, "v", pair + 2)) %>% 
    rename(prod_grp = pair)
# put the original frame and summary frames together
final_df <- 
    df %>% 
    left_join(prod_df) %>% 
    select(-prod_grp)