sal*_*uer 5 r bayesian causality
我想在R中使用CausalImpact软件包来估算干预措施对传染病病例数的影响。我们通常将个案数的分布特征描述为泊松或负二项式。该bsts()函数使我们可以指定泊松族。但是,这遇到了错误CausalImpact()
set.seed(1)
x1 <- 100 + arima.sim(model = list(ar = 0.999), n = 100)
y <- rpois(100, 1.2 * x1)
y[71:100] <- y[71:100] + 10
data <- cbind(y, x1)
pre.period <- c(1, 70)
post.period <- c(71, 100)
post.period.response <- y[post.period[1] : post.period[2]]
y[post.period[1] : post.period[2]] <- NA
ss <- AddLocalLevel(list(), y)
bsts.model <- bsts(y ~ x1, ss, family="poisson", niter = 1000)
impact <- CausalImpact(bsts.model = bsts.model,
post.period.response = post.period.response)
Error in rnorm(prod(dim(state.samples)), 0, sigma.obs) : invalid arguments
Run Code Online (Sandbox Code Playgroud)
这是由于使用生成时bsts.model没有sigma.obs插槽的事实family="poisson"。
我是在正确执行此操作吗,还是有其他方法可以将CausalImpact用于Poisson数据?(我也很想能够使用负二项式数据,但是我不会太贪心)。
最后,这是为CausalImpact编码问题的最佳场所吗?我在GitHub页面上没有看到“问题”标签。