如何用scipy和lfilter实时过滤?

tro*_*dhe 6 python filtering signal-processing real-time scipy

免责声明:我可能不如dsp那么好,因此有更多的问题让这些代码能够运行我应该拥有的东西.

我需要能够在传输信号发生时对其进行过滤.我试图使这个代码工作,但不能让我的生活得到它的工作.引用scipy.signal.lfilter doc

import numpy as np
import scipy.signal
import matplotlib.pyplot as plt
from lib import fnlib

samples = 100
x = np.linspace(0, 7, samples)
y = [] # Unfiltered output
y_filt1 = [] # Real-time filtered

nyq = 0.5 * samples
f1_norm = 0.1 / nyq
f2_norm = 2 / nyq
b, a = scipy.signal.butter(2, [f1_norm, f2_norm], 'band', analog=False)
zi = scipy.signal.lfilter_zi(b,a)
zi = zi*(np.sin(0) + 0.1*np.sin(15*0))
Run Code Online (Sandbox Code Playgroud)

这最初将zi设置为zi*y [0],在本例中为0.取自lfilter doc中的示例代码.不确定这是否正确.

然后它到了我不确定如何使用初始少量样本的地步.这里a和b系数是len(a)= 5.由于lfilter需要从现在到n-4的输入值,我是否用零填充它,或者我是否需要等到5个样本经过,将其作为块进行采样,然后继续对每个下一步进行采样?

for i in range(0, len(a)-1): # Append 0 as initial values, wrong?
    y.append(0)

step = 0
for i in xrange(0, samples): #x:
    tmp = np.sin(x[i]) + 0.1*np.sin(15*x[i])
    y.append(tmp)

    # What to do with the inital filterings until len(y) ==  len(a) ?

    if (step> len(a)):
        y_filt, zi = scipy.signal.lfilter(b, a, y[-len(a):], axis=-1, zi=zi)
        y_filt1.append(y_filt[4])

print(len(y))
y = y[4:]
print(len(y))
y_filt2 = scipy.signal.lfilter(b, a, y) # Offline filtered

plt.plot(x, y, x, y_filt1, x, y_filt2)
plt.show()
Run Code Online (Sandbox Code Playgroud)

dlo*_*ckx 7

我想我遇到了同样的问题,并在https://github.com/scipy/scipy/issues/5116上找到了解决方案:

from scipy import zeros, signal, random

def filter_sbs():
    data = random.random(2000)
    b = signal.firwin(150, 0.004)
    z = signal.lfilter_zi(b, 1)
    result = zeros(data.size)
    for i, x in enumerate(data):
        result[i], z = signal.lfilter(b, 1, [x], zi=z)
    return result

if __name__ == '__main__':
    result = filter_sbs()
Run Code Online (Sandbox Code Playgroud)

这个想法是z在每次后续调用中传递过滤器状态lfilter。对于前几个样本,过滤器可能会给出奇怪的结果,但稍后(取决于过滤器长度)它开始正确运行。