我有一个向量,它提供矩阵每行有多少"1".现在我必须从向量中创建这个矩阵.
例如,假设我想创建一个out带有跟随向量的4 x 9矩阵v <- c(2,6,3,9).结果应该是这样的
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 1 1 0 0 0 0 0 0 0
[2,] 1 1 1 1 1 1 0 0 0
[3,] 1 1 1 0 0 0 0 0 0
[4,] 1 1 1 1 1 1 1 1 1
Run Code Online (Sandbox Code Playgroud)
我用for循环完成了这个但是我的解决方案对于大矩阵(100,000 x 500)来说很慢:
out <- NULL
for(i in 1:length(v)){
out <- rbind(out,c(rep(1, v[i]),rep(0,9-v[i])))
}
Run Code Online (Sandbox Code Playgroud)
有谁有想法以更快的方式创建这样的矩阵?
2016-11-24更新
我今天回答R中的Ragged rowSums时得到了另一个解决方案:
outer(v, 1:9, ">=") + 0L
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
#[1,] 1 1 0 0 0 0 0 0 0
#[2,] 1 1 1 1 1 1 0 0 0
#[3,] 1 1 1 0 0 0 0 0 0
#[4,] 1 1 1 1 1 1 1 1 1
Run Code Online (Sandbox Code Playgroud)
这与f我的初始答案中的函数具有相同的内存使用量,并且它不会慢于f.在我原来的答案中考虑基准:
microbenchmark(my_old = f(v, n), my_new = outer(v, n, ">=") + 0L, unit = "ms")
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# my_old 109.3422 111.0355 121.0382120 111.16752 112.44472 210.36808 100 b
# my_new 0.3094 0.3199 0.3691904 0.39816 0.40608 0.45556 100 a
Run Code Online (Sandbox Code Playgroud)
请注意这种新方法的速度有多快,但我的旧方法已经是现有解决方案中最快的方法(见下文)!
2016-11-07的原始答案
这是我的"尴尬"解决方案:
f <- function (v, n) {
# n <- 9 ## total number of column
# v <- c(2,6,3,9) ## number of 1 each row
u <- n - v ## number of 0 each row
m <- length(u) ## number of rows
d <- rep.int(c(1,0), m) ## discrete value for each row
asn <- rbind(v, u) ## assignment of `d`
fill <- rep.int(d, asn) ## matrix elements
matrix(fill, byrow = TRUE, ncol = n)
}
n <- 9 ## total number of column
v <- c(2,6,3,9) ## number of 1 each row
f(v, n)
# [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
#[1,] 1 1 0 0 0 0 0 0 0
#[2,] 1 1 1 1 1 1 0 0 0
#[3,] 1 1 1 0 0 0 0 0 0
#[4,] 1 1 1 1 1 1 1 1 1
Run Code Online (Sandbox Code Playgroud)
我们考虑大问题规模的基准:
n <- 500 ## 500 columns
v <- sample.int(n, 10000, replace = TRUE) ## 10000 rows
microbenchmark(
my_bad = f(v, n),
roman = {
xy <- sapply(v, FUN = function(x, ncols) {
c(rep(1, x), rep(0, ncols - x))
}, ncols = n, simplify = FALSE)
do.call("rbind", xy)
},
fourtytwo = {
t(vapply(v, function(y) { x <- numeric( length=n); x[1:y] <- 1;x}, numeric(n) ) )
},
akrun = {
sparseMatrix(i = rep(seq_along(v), v), j = sequence(v), x = 1)
},
unit = "ms")
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# my_bad 105.7507 118.6946 160.6818 138.5855 186.3762 327.3808 100 a
# roman 176.9003 194.7467 245.0450 213.8680 305.9537 435.5974 100 b
# fourtytwo 235.0930 256.5129 307.3099 273.2280 358.8224 587.3256 100 c
# akrun 316.7131 351.6184 408.5509 389.9576 456.0704 604.2667 100 d
Run Code Online (Sandbox Code Playgroud)
我的方法实际上是最快的!!