wsz*_*mjj 8 statistics rss r linear-regression
下面是数据集的线性模型输出,该数据集由响应变量和三个解释变量组成.我如何获得原始回归的RSS?
Call:
lm(formula = y ~ x1 + x2 + x3)
Residuals:
Min 1Q Median 3Q Max
-4.9282 -1.3174 0.0059 1.3238 4.4560
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -7.056057 1.963805 -3.593 0.000481 ***
x1 3.058592 0.089442 34.196 < 2e-16 ***
x2 -5.763410 0.168072 -34.291 < 2e-16 ***
x3 0.000571 0.165153 0.003 0.997247
---
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
Residual standard error: 1.928 on 116 degrees of freedom
Multiple R-squared: 0.9546,Adjusted R-squared: 0.9535
F-statistic: 814 on 3 and 116 DF, p-value: < 2.2e-16
Run Code Online (Sandbox Code Playgroud)
G. *_*eck 20
以下是使用内置anscombe数据集计算残差平方和(RSS)的一些方法:
fm <- lm(y1 ~ x1+x2+x3, anscombe)
deviance(fm)
## [1] 13.76269
sum(resid(fm)^2)
## [1] 13.76269
anova(fm) # see the Residuals row of the Sum Sq column
## Analysis of Variance Table
##
## Response: y1
## Df Sum Sq Mean Sq F value Pr(>F)
## x1 1 27.510 27.5100 17.99 0.00217 **
## Residuals 9 13.763 1.5292
## ---
## Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
anova(fm)["Residuals", "Sum Sq"]
## [1] 13.76269
with(summary(fm), df[2] * sigma^2)
## [1] 13.76269
Run Code Online (Sandbox Code Playgroud)
关于最后一个,请注意,如果您只想使用打印输出来计算RSS summary(fm)$df[2],summary(fm)$sigma则会在summary(fm)输出中显示summary.特别地,对于问题df [2] = 116和sigma = 1.928中所示的输出,所以RSS = df [2]*sigma ^ 2 = 116*1.928 ^ 2 = 431.1933.
| 归档时间: |
|
| 查看次数: |
25204 次 |
| 最近记录: |