5 r function symbolic-math derivative polynomials
我从我的数据中找到了多项式系数:
R <- c(0.256,0.512,0.768,1.024,1.28,1.437,1.594,1.72,1.846,1.972,2.098,2.4029)
Ic <- c(1.78,1.71,1.57,1.44,1.25,1.02,0.87,0.68,0.54,0.38,0.26,0.17)
NN <- 3
ft <- lm(Ic ~ poly(R, NN, raw = TRUE))
pc <- coef(ft)
Run Code Online (Sandbox Code Playgroud)
所以我可以创建一个多项式函数:
f1 <- function(x) pc[1] + pc[2] * x + pc[3] * x ^ 2 + pc[4] * x ^ 3
Run Code Online (Sandbox Code Playgroud)
例如,采取衍生物:
g1 <- Deriv(f1)
Run Code Online (Sandbox Code Playgroud)
如何创建一个通用函数,以便不必为每个新的多项式程度重写它NN?
我原来的答案可能不是你真正想要的,因为它是数字而不是象征性的。这是象征性的解决方案。
## use `"x"` as variable name
## taking polynomial coefficient vector `pc`
## can return a string, or an expression by further parsing (mandatory for `D`)
f <- function (pc, expr = TRUE) {
stringexpr <- paste("x", seq_along(pc) - 1, sep = " ^ ")
stringexpr <- paste(stringexpr, pc, sep = " * ")
stringexpr <- paste(stringexpr, collapse = " + ")
if (expr) return(parse(text = stringexpr))
else return(stringexpr)
}
## an example cubic polynomial with coefficients 0.1, 0.2, 0.3, 0.4
cubic <- f(pc = 1:4 / 10, TRUE)
## using R base's `D` (requiring expression)
dcubic <- D(cubic, name = "x")
# 0.2 + 2 * x * 0.3 + 3 * x^2 * 0.4
## using `Deriv::Deriv`
library(Deriv)
dcubic <- Deriv(cubic, x = "x", nderiv = 1L)
# expression(0.2 + x * (0.6 + 1.2 * x))
Deriv(f(1:4 / 10, FALSE), x = "x", nderiv = 1L) ## use string, get string
# [1] "0.2 + x * (0.6 + 1.2 * x)"
Run Code Online (Sandbox Code Playgroud)
当然,Deriv使得高阶导数更容易获得。我们可以简单设置一下nderiv。然而D,我们必须使用递归(参见示例?D)。
Deriv(cubic, x = "x", nderiv = 2L)
# expression(0.6 + 2.4 * x)
Deriv(cubic, x = "x", nderiv = 3L)
# expression(2.4)
Deriv(cubic, x = "x", nderiv = 4L)
# expression(0)
Run Code Online (Sandbox Code Playgroud)
如果我们使用表达式,我们将能够稍后评估结果。例如,
eval(cubic, envir = list(x = 1:4)) ## cubic polynomial
# [1] 1.0 4.9 14.2 31.3
eval(dcubic, envir = list(x = 1:4)) ## its first derivative
# [1] 2.0 6.2 12.8 21.8
Run Code Online (Sandbox Code Playgroud)
上面意味着我们可以包装函数的表达式。使用函数有几个优点,其中之一是我们可以使用curve或来绘制它plot.function。
fun <- function(x, expr) eval.parent(expr, n = 0L)
Run Code Online (Sandbox Code Playgroud)
请注意, 的成功fun需要expr是符号 的表达式x。例如,如果expr用 来定义,我们需要用来定义。现在让我们使用在范围 上绘制和:yfunfunction (y, expr)curvecubicdcubic0 < x < 5
curve(fun(x, cubic), from = 0, to = 5) ## colour "black"
curve(fun(x, dcubic), add = TRUE, col = 2) ## colour "red"
Run Code Online (Sandbox Code Playgroud)
最方便的方式当然是定义单个函数FUN而不是做f+fun组合。这样,我们也不需要担心 和 所使用的变量名的f一致性fun。
FUN <- function (x, pc, nderiv = 0L) {
## check missing arguments
if (missing(x) || missing(pc)) stop ("arguments missing with no default!")
## expression of polynomial
stringexpr <- paste("x", seq_along(pc) - 1, sep = " ^ ")
stringexpr <- paste(stringexpr, pc, sep = " * ")
stringexpr <- paste(stringexpr, collapse = " + ")
expr <- parse(text = stringexpr)
## taking derivatives
dexpr <- Deriv::Deriv(expr, x = "x", nderiv = nderiv)
## evaluation
val <- eval.parent(dexpr, n = 0L)
## note, if we take to many derivatives so that `dexpr` becomes constant
## `val` is free of `x` so it will only be of length 1
## we need to repeat this constant to match `length(x)`
if (length(val) == 1L) val <- rep.int(val, length(x))
## now we return
val
}
Run Code Online (Sandbox Code Playgroud)
假设我们想要计算一个三次多项式,pc <- c(0.1, 0.2, 0.3, 0.4)其系数及其导数在 上x <- seq(0, 1, 0.2),我们可以简单地这样做:
FUN(x, pc)
# [1] 0.1000 0.1552 0.2536 0.4144 0.6568 1.0000
FUN(x, pc, nderiv = 1L)
# [1] 0.200 0.368 0.632 0.992 1.448 2.000
FUN(x, pc, nderiv = 2L)
# [1] 0.60 1.08 1.56 2.04 2.52 3.00
FUN(x, pc, nderiv = 3L)
# [1] 2.4 2.4 2.4 2.4 2.4 2.4
FUN(x, pc, nderiv = 4L)
# [1] 0 0 0 0 0 0
Run Code Online (Sandbox Code Playgroud)
现在绘图也很容易:
curve(FUN(x, pc), from = 0, to = 5)
curve(FUN(x, pc, 1), from = 0, to = 5, add = TRUE, col = 2)
curve(FUN(x, pc, 2), from = 0, to = 5, add = TRUE, col = 3)
curve(FUN(x, pc, 3), from = 0, to = 5, add = TRUE, col = 4)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
364 次 |
| 最近记录: |