我对此进行了大量研究,我认为我的逻辑已经过时了,几乎到此为止,但似乎无法理解为什么 cv2.imshow() 窗口中没有显示任何内容只是一个灰色框,但好消息是我能够检测人脸并裁剪该人脸,然后将其保存在文件夹中。
你能不能解释一下我哪里出错了
#Author: Waheed Rafiq
#Research Student Birmingham City University
#Date: 03/11/2016
#Description :detect and Save capture face in a folder.
#Import library required for Capture face.
import cv2
#import the cascade for face detection
FaceClassifier =cv2.CascadeClassifier
('haarcascade_frontalface_default.xml')
# access the webcam (every webcam has
capture = cv2.VideoCapture(0)
while(True):
# Capture frame-by-frame
ret, frame = capture.read()
if not capture:
print "Error opening webcam device"
sys.exit(1)
# to detect faces in video
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = FaceClassifier.detectMultiScale(gray, 1.3, 5)
# Resize Image
minisize = (frame.shape[1],frame.shape[0])
miniframe = cv2.resize(frame, minisize)
# Store detected frames in variable name faces
faces = FaceClassifier.detectMultiScale(miniframe)
# Draw rectangle
for f in faces:
x, y, w, h = [ v for v in f ]
cv2.rectangle(frame, (x,y), (x+w,y+h), (255,255,255))
#Save just the rectangle faces in SubRecFaces
sub_face = frame[y:y+h, x:x+w]
FaceFileName = "unknowfaces/face_" + str(y) + ".jpg"
cv2.imwrite(FaceFileName, sub_face)
#Display the image
cv2.imshow('Result',frame)
break
# When everything done, release the capture
img.release()
cv2.waitKey(20)
cv2.destroyAllWindows()
Run Code Online (Sandbox Code Playgroud)
真的很想得到你的支持
我不得不修改我的代码,并再次重新思考逻辑:对于那些希望知道如何使用 Opencv 从网络摄像头或 Raspberry PI 检测人脸然后裁剪检测到的人脸的人,这就是你在 python 2.7 中的做法使用 OpenCV 2.4.12
# croppfacedetection.py
#Author: Waheed Rafiq
#Research Student Birmingham City University
#Date: 03/11/2016
#Description : Save capture face in a folder.
#Import library required for Capture face.
# Should you wish to use this code for
#education purpose in your assignment or dissertation
# please use the correct citation and give credit where required.
import cv2
size = 4
webcam = cv2.VideoCapture(0) #Use camera 0
# We load the xml file
classifier = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
# Above line normalTest
#classifier = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml')
#Above line test with different calulation
#classifier = cv2.CascadeClassifier('haarcascade_frontalface_alt_tree.xml')
#classifier = cv2.CascadeClassifier('lbpcascade_frontalface.xml')
while True:
(rval, im) = webcam.read()
im=cv2.flip(im,1,0) #Flip to act as a mirror
# Resize the image to speed up detection
mini = cv2.resize(im, (im.shape[1] / size, im.shape[0] / size))
# detect MultiScale / faces
faces = classifier.detectMultiScale(mini)
# Draw rectangles around each face
for f in faces:
(x, y, w, h) = [v * size for v in f] #Scale the shapesize backup
cv2.rectangle(im, (x, y), (x + w, y + h),(0,255,0),thickness=4)
#Save just the rectangle faces in SubRecFaces
sub_face = im[y:y+h, x:x+w]
FaceFileName = "unknowfaces/face_" + str(y) + ".jpg"
cv2.imwrite(FaceFileName, sub_face)
# Show the image
cv2.imshow('BCU Research by Waheed Rafiq (c)', im)
key = cv2.waitKey(10)
# if Esc key is press then break out of the loop
if key == 27: #The Esc key
break
Run Code Online (Sandbox Code Playgroud)
请记住,您将需要创建一个文件夹,在该区域内您将需要一个名为 unknownfaces 的文件夹,从该文件夹的根目录运行脚本,它将检测到的任何人脸保存到 unknowfaces 文件夹中。有关此代码的更多信息将很快可用我的网站
waheedrafiq.net
| 归档时间: |
|
| 查看次数: |
12112 次 |
| 最近记录: |