hyp*_*c54 4 window-functions apache-spark apache-spark-sql pyspark
目前我正在试图提取系列连续出现在PySpark数据帧和订单/对他们进行排名,如下图所示(为方便起见,我已经下令初始数据框user_id和timestamp):
df_ini
Run Code Online (Sandbox Code Playgroud)
+-------+--------------------+------------+
|user_id| timestamp | actions |
+-------+--------------------+------------+
| 217498| 100000001| 'A' |
| 217498| 100000025| 'A' |
| 217498| 100000124| 'A' |
| 217498| 100000152| 'B' |
| 217498| 100000165| 'C' |
| 217498| 100000177| 'C' |
| 217498| 100000182| 'A' |
| 217498| 100000197| 'B' |
| 217498| 100000210| 'B' |
| 854123| 100000005| 'A' |
| 854123| 100000007| 'A' |
| etc.
Run Code Online (Sandbox Code Playgroud)
至 :
expected df_transformed
Run Code Online (Sandbox Code Playgroud)
+-------+------------+------------+------------+
|user_id| actions | nb_of_occ | order |
+-------+------------+------------+------------+
| 217498| 'A' | 3 | 1 |
| 217498| 'B' | 1 | 2 |
| 217498| 'C' | 2 | 3 |
| 217498| 'A' | 1 | 4 |
| 217498| 'B' | 2 | 5 |
| 854123| 'A' | 2 | 1 |
| etc.
Run Code Online (Sandbox Code Playgroud)
我的猜测是我必须使用一个智能窗口函数,通过user_id和actions对表进行分区,但仅当这些操作是连续的时候!哪个我想不通怎么办......
如果有人在PySpark中遇到这种类型的转换,我会很高兴得到一个提示!
干杯
这是一种非常常见的模式,可以通过几个步骤使用窗口函数表示.首先导入所需的功能:
from pyspark.sql.functions import sum as sum_, lag, col, coalesce, lit
from pyspark.sql.window import Window
Run Code Online (Sandbox Code Playgroud)
接下来定义一个窗口:
w = Window.partitionBy("user_id").orderBy("timestamp")
Run Code Online (Sandbox Code Playgroud)
标记每个组的第一行:
is_first = coalesce(
(lag("actions", 1).over(w) != col("actions")).cast("bigint"),
lit(1)
)
Run Code Online (Sandbox Code Playgroud)
定义order:
order = sum_("is_first").over(w)
Run Code Online (Sandbox Code Playgroud)
并将所有部分与聚合组合在一起:
(df
.withColumn("is_first", is_first)
.withColumn("order", order)
.groupBy("user_id", "actions", "order")
.count())
Run Code Online (Sandbox Code Playgroud)
如果您定义df为:
df = sc.parallelize([
(217498, 100000001, 'A'), (217498, 100000025, 'A'), (217498, 100000124, 'A'),
(217498, 100000152, 'B'), (217498, 100000165, 'C'), (217498, 100000177, 'C'),
(217498, 100000182, 'A'), (217498, 100000197, 'B'), (217498, 100000210, 'B'),
(854123, 100000005, 'A'), (854123, 100000007, 'A')
]).toDF(["user_id", "timestamp", "actions"])
Run Code Online (Sandbox Code Playgroud)
并按结果排序user_id,order你会得到:
+-------+-------+-----+-----+
|user_id|actions|order|count|
+-------+-------+-----+-----+
| 217498| A| 1| 3|
| 217498| B| 2| 1|
| 217498| C| 3| 2|
| 217498| A| 4| 1|
| 217498| B| 5| 2|
| 854123| A| 1| 2|
+-------+-------+-----+-----+
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
4853 次 |
| 最近记录: |