alv*_*vas 8 python optimization counter mapreduce n-gram
鉴于big.txt来自norvig.com/big.txt,我们的目标是快速计算双子座(想象一下,我必须重复这次计数100,000次).
根据python中的Fast/Optimize N-gram实现,像这样提取bigrams是最优的:
_bigrams = zip(*[text[i:] for i in range(2)])
Run Code Online (Sandbox Code Playgroud)
如果我正在使用Python3,生成器将不会被评估,直到我实现它list(_bigrams)或其他一些将执行相同的功能.
import io
from collections import Counter
import time
with io.open('big.txt', 'r', encoding='utf8') as fin:
text = fin.read().lower().replace(u' ', u"\uE000")
while True:
_bigrams = zip(*[text[i:] for i in range(2)])
start = time.time()
top100 = Counter(_bigrams).most_common(100)
# Do some manipulation to text and repeat the counting.
text = manipulate(text, top100)
Run Code Online (Sandbox Code Playgroud)
但是每次迭代需要大约1秒以上,100,000次迭代会太长.
我也尝试过sklearnCountVectorizer,但是提取,计算和获得top100双字母的时间与原生python相当.
然后我尝试了一些multiprocessing,使用Python多处理和共享计数器的轻微修改和http://eli.thegreenplace.net/2012/01/04/shared-counter-with-pythons-multiprocessing:
from multiprocessing import Process, Manager, Lock
import time
class MultiProcCounter(object):
def __init__(self):
self.dictionary = Manager().dict()
self.lock = Lock()
def increment(self, item):
with self.lock:
self.dictionary[item] = self.dictionary.get(item, 0) + 1
def func(counter, item):
counter.increment(item)
def multiproc_count(inputs):
counter = MultiProcCounter()
procs = [Process(target=func, args=(counter,_in)) for _in in inputs]
for p in procs: p.start()
for p in procs: p.join()
return counter.dictionary
inputs = [1,1,1,1,2,2,3,4,4,5,2,2,3,1,2]
print (multiproc_count(inputs))
Run Code Online (Sandbox Code Playgroud)
但是使用MultiProcCounterbigram计数每次迭代的时间甚至超过1秒.我不知道为什么会这样,使用虚拟列表的int例子,multiproc_count完美的工作.
我试过了:
import io
from collections import Counter
import time
with io.open('big.txt', 'r', encoding='utf8') as fin:
text = fin.read().lower().replace(u' ', u"\uE000")
while True:
_bigrams = zip(*[text[i:] for i in range(2)])
start = time.time()
top100 = Counter(multiproc_count(_bigrams)).most_common(100)
Run Code Online (Sandbox Code Playgroud)
有没有办法在Python中真正快速计算bigrams?
小智 0
我的建议:
Text= "The Project Gutenberg EBook of The Adventures of Sherlock Holmes"
"by Sir Arthur Conan Doyle"
# Counters
Counts= [[0 for x in range(128)] for y in range(128)]
# Perform the counting
R= ord(Text[0])
for i in range(1, len(Text)):
L= R; R= ord(Text[i])
Counts[L][R]+= 1
# Output the results
for i in range(ord('A'), ord('{')):
if i < ord('[') or i >= ord('a'):
for j in range(ord('A'), ord('{')):
if (j < ord('[') or j >= ord('a')) and Counts[i][j] > 0:
print chr(i) + chr(j), Counts[i][j]
Ad 1
Bo 1
EB 1
Gu 1
Ho 1
Pr 1
Sh 1
Th 2
be 1
ck 1
ct 1
dv 1
ec 1
en 2
er 2
es 2
he 3
je 1
lm 1
lo 1
me 1
nb 1
nt 1
oc 1
of 2
oj 1
ok 1
ol 1
oo 1
re 1
rg 1
rl 1
ro 1
te 1
tu 1
ur 1
ut 1
ve 1
Run Code Online (Sandbox Code Playgroud)
该版本区分大小写;可能最好先将整个文本小写。