syg*_*ygi 4 python numpy argmax
我有一个任意形状的numpy数组,例如:
a = array([[[ 1, 2],
[ 3, 4],
[ 8, 6]],
[[ 7, 8],
[ 9, 8],
[ 3, 12]]])
a.shape = (2, 3, 2)
Run Code Online (Sandbox Code Playgroud)
和argmax在最后一个轴上的结果:
np.argmax(a, axis=-1) = array([[1, 1, 0],
[1, 0, 1]])
Run Code Online (Sandbox Code Playgroud)
我想得到最大值:
np.max(a, axis=-1) = array([[ 2, 4, 8],
[ 8, 9, 12]])
Run Code Online (Sandbox Code Playgroud)
但没有重新计算一切.我试过了:
a[np.arange(len(a)), np.argmax(a, axis=-1)]
Run Code Online (Sandbox Code Playgroud)
但得到了:
IndexError: shape mismatch: indexing arrays could not be broadcast together with shapes (2,) (2,3)
Run Code Online (Sandbox Code Playgroud)
怎么做?类似的问题2-d:numpy 2d array max/argmax
你可以用advanced indexing-
In [17]: a
Out[17]:
array([[[ 1, 2],
[ 3, 4],
[ 8, 6]],
[[ 7, 8],
[ 9, 8],
[ 3, 12]]])
In [18]: idx = a.argmax(axis=-1)
In [19]: m,n = a.shape[:2]
In [20]: a[np.arange(m)[:,None],np.arange(n),idx]
Out[20]:
array([[ 2, 4, 8],
[ 8, 9, 12]])
Run Code Online (Sandbox Code Playgroud)
对于任何数量维度的通用ndarray案例,如我所述comments by @hpaulj,我们可以使用np.ix_,如此 -
shp = np.array(a.shape)
dim_idx = list(np.ix_(*[np.arange(i) for i in shp[:-1]]))
dim_idx.append(idx)
out = a[dim_idx]
Run Code Online (Sandbox Code Playgroud)