将 MySQL 表转换为镶木地板时出现 Spark 异常

Mar*_*ele 5 apache-spark parquet apache-spark-sql

我正在尝试使用 spark 1.6.2 将 MySQL 远程表转换为镶木地板文件。

该过程运行 10 分钟,填满内存,然后从以下消息开始:

WARN NettyRpcEndpointRef: Error sending message [message = Heartbeat(driver,[Lscala.Tuple2;@dac44da,BlockManagerId(driver, localhost, 46158))] in 1 attempts
org.apache.spark.rpc.RpcTimeoutException: Futures timed out after [10 seconds]. This timeout is controlled by spark.executor.heartbeatInterval
Run Code Online (Sandbox Code Playgroud)

最后失败并出现此错误:

ERROR ActorSystemImpl: Uncaught fatal error from thread [sparkDriverActorSystem-scheduler-1] shutting down ActorSystem [sparkDriverActorSystem]
java.lang.OutOfMemoryError: GC overhead limit exceeded
Run Code Online (Sandbox Code Playgroud)

我使用以下命令在 spark-shell 中运行它:

spark-shell --packages mysql:mysql-connector-java:5.1.26 org.slf4j:slf4j-simple:1.7.21 --driver-memory 12G

val dataframe_mysql = sqlContext.read.format("jdbc").option("url", "jdbc:mysql://.../table").option("driver", "com.mysql.jdbc.Driver").option("dbtable", "...").option("user", "...").option("password", "...").load()

dataframe_mysql.saveAsParquetFile("name.parquet")
Run Code Online (Sandbox Code Playgroud)

我将最大执行程序内存限制为 12G。有没有办法强制将镶木地板文件写入“小”块以释放内存?

eli*_*sah 5

问题似乎是您在使用 jdbc 连接器读取数据时没有定义分区。

默认情况下,从 JDBC 读取不是分布式的,因此要启用分布式,您必须设置手动分区。您需要一个作为良好分区键的列,并且您必须预先了解分布情况。

这显然是您的数据的样子:

root 
|-- id: long (nullable = false) 
|-- order_year: string (nullable = false) 
|-- order_number: string (nullable = false) 
|-- row_number: integer (nullable = false) 
|-- product_code: string (nullable = false) 
|-- name: string (nullable = false) 
|-- quantity: integer (nullable = false) 
|-- price: double (nullable = false) 
|-- price_vat: double (nullable = false) 
|-- created_at: timestamp (nullable = true) 
|-- updated_at: timestamp (nullable = true)
Run Code Online (Sandbox Code Playgroud)

order_year对我来说似乎是一个很好的候选人。(根据您的评论,您似乎有大约 20 年的时间)

import org.apache.spark.sql.SQLContext

val sqlContext: SQLContext = ???

val driver: String = ???
val connectionUrl: String = ???
val query: String = ???
val userName: String = ???
val password: String = ???

// Manual partitioning
val partitionColumn: String = "order_year"

val options: Map[String, String] = Map("driver" -> driver,
  "url" -> connectionUrl,
  "dbtable" -> query,
  "user" -> userName,
  "password" -> password,
  "partitionColumn" -> partitionColumn,
  "lowerBound" -> "0",
  "upperBound" -> "3000",
  "numPartitions" -> "300"
)

val df = sqlContext.read.format("jdbc").options(options).load()
Run Code Online (Sandbox Code Playgroud)

PS: partitionColumn , lowerBound, upperBound, numPartitions: 如果指定了其中任何一个,则必须全部指定这些选项。

现在你可以保存你DataFrame的镶木地板。