Val*_*dra 7 python lstm tensorflow
我是TensorFlow的新手,很难理解RNN模块.我试图从LSTM中提取隐藏/单元状态.对于我的代码,我使用的是https://github.com/aymericdamien/TensorFlow-Examples中的实现.
# tf Graph input
x = tf.placeholder("float", [None, n_steps, n_input])
y = tf.placeholder("float", [None, n_classes])
# Define weights
weights = {'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))}
biases = {'out': tf.Variable(tf.random_normal([n_classes]))}
def RNN(x, weights, biases):
# Prepare data shape to match `rnn` function requirements
# Current data input shape: (batch_size, n_steps, n_input)
# Required shape: 'n_steps' tensors list of shape (batch_size, n_input)
# Permuting batch_size and n_steps
x = tf.transpose(x, [1, 0, 2])
# Reshaping to (n_steps*batch_size, n_input)
x = tf.reshape(x, [-1, n_input])
# Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)
x = tf.split(0, n_steps, x)
# Define a lstm cell with tensorflow
#with tf.variable_scope('RNN'):
lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0, state_is_tuple=True)
# Get lstm cell output
outputs, states = rnn.rnn(lstm_cell, x, dtype=tf.float32)
# Linear activation, using rnn inner loop last output
return tf.matmul(outputs[-1], weights['out']) + biases['out'], states
pred, states = RNN(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
Run Code Online (Sandbox Code Playgroud)
现在我想为预测中的每个时间步骤提取单元格/隐藏状态.状态存储在形式为(c,h)的LSTMStateTuple中,我可以通过评估找到它print states.但是,尝试调用print states.c.eval()(根据文档应该给出张量中的值states.c),会产生一个错误,指出我的变量没有被初始化,即使我在预测某些东西后正在调用它.这个代码在这里:
# Launch the graph
with tf.Session() as sess:
sess.run(init)
step = 1
# Keep training until reach max iterations
for v in tf.get_collection(tf.GraphKeys.VARIABLES, scope='RNN'):
print v.name
while step * batch_size < training_iters:
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Reshape data to get 28 seq of 28 elements
batch_x = batch_x.reshape((batch_size, n_steps, n_input))
# Run optimization op (backprop)
sess.run(optimizer, feed_dict={x: batch_x, y: batch_y})
print states.c.eval()
# Calculate batch accuracy
acc = sess.run(accuracy, feed_dict={x: batch_x, y: batch_y})
step += 1
print "Optimization Finished!"
Run Code Online (Sandbox Code Playgroud)
并且错误消息是
InvalidArgumentError: You must feed a value for placeholder tensor 'Placeholder' with dtype float
[[Node: Placeholder = Placeholder[dtype=DT_FLOAT, shape=[], _device="/job:localhost/replica:0/task:0/cpu:0"]()]]
Run Code Online (Sandbox Code Playgroud)
状态也是不可见的tf.all_variables(),只有经过训练的矩阵/偏置张量(如下所述:Tensorflow:在LSTM中显示或保存忘记门值).我不想从头开始构建整个LSTM,因为我在states变量中有状态,我只需要调用它.
您可以简单地以收集states精度的方式收集值.
我想,pred, states, acc = sess.run(pred, states, accuracy, feed_dict={x: batch_x, y: batch_y})应该完美无缺.
| 归档时间: |
|
| 查看次数: |
5842 次 |
| 最近记录: |