我有以下文件:
id review
1 "Human machine interface for lab abc computer applications."
2 "A survey of user opinion of computer system response time."
3 "The EPS user interface management system."
4 "System and human system engineering testing of EPS."
5 "Relation of user perceived response time to error measurement."
6 "The generation of random binary unordered trees."
7 "The intersection graph of paths in trees."
8 "Graph minors IV Widths of trees and well quasi ordering."
9 "Graph minors A survey."
10 "survey is a state of art."
Run Code Online (Sandbox Code Playgroud)
每一行都涉及一个文档。
我将这些文档转换为语料库,并找到每个单词的 TFIDF:
from collections import defaultdict
import csv
from sklearn.feature_extraction.text import TfidfVectorizer
reviews = defaultdict(list)
with open("C:/Users/user/workspacePython/Tutorial/data/unlabeledTrainData.tsv", "r") as sentences_file:
reader = csv.reader(sentences_file, delimiter='\t')
reader.next()
for row in reader:
reviews[row[1]].append(row[1])
for id, review in reviews.iteritems():
reviews[id] = " ".join(review)
corpus = []
for id, review in sorted(reviews.iteritems(), key=lambda t: id):
corpus.append(review)
tf = TfidfVectorizer(analyzer='word', ngram_range=(1,1), min_df = 1, stop_words = 'english')
tfidf_matrix = tf.fit_transform(corpus)
Run Code Online (Sandbox Code Playgroud)
我的问题是:我如何获取给定文档(从上面的文件)其在 tfidf_matrix 中的相应向量(行)。
谢谢
您有一个文档列表,从 1 到 10。用数组索引术语来说,就是 0 到 9。该变量tfidx_matrix将包含一个稀疏行形式矩阵,该矩阵由行(表示文档)及其与整个语料库中的词汇(减去英语停用词)的规范化关联组成。
因此,要将稀疏数组转换为更传统的矩阵,您可以尝试
npm_tfidf = tfidf_matrix.todense()
document_1_vector = npm_tfidf[0]
document_2_vector = npm_tfidf[1]
document_3_vector = npm_tfidf[2]
...
document_10_vector = npm_tfidf[9]
Run Code Online (Sandbox Code Playgroud)
有更简单更好的方法来提取内容,但我认为阻碍您的部分是从稀疏矩阵表示形式(可能很难解开)和更传统的密集矩阵表示形式的转换。
另请注意,解释向量将要求您能够提取在此过程中提取的词汇表 - 这应该采用有序(按字母顺序排列的标记列表)的形式,并且可以使用以下方式提取:
vocabulary = tfidf_matrix.get_feature_names()
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
5792 次 |
| 最近记录: |