任何人都可以帮我解释WinDbg中这个简单的反汇编吗?

smw*_*dia 11 c c++ debugging assembly

我得到了以下简单的C++代码:

#include <stdio.h>
int main(void)
{
    ::printf("\nHello,debugger!\n");
}
Run Code Online (Sandbox Code Playgroud)

从WinDbg,我得到了以下反汇编代码:

SimpleDemo!main:
01111380 55              push    ebp
01111381 8bec            mov     ebp,esp
01111383 81ecc0000000    sub     esp,0C0h
01111389 53              push    ebx
0111138a 56              push    esi
0111138b 57              push    edi
0111138c 8dbd40ffffff    lea     edi,[ebp-0C0h]
01111392 b930000000      mov     ecx,30h
01111397 b8cccccccc      mov     eax,0CCCCCCCCh
0111139c f3ab            rep stos dword ptr es:[edi]
0111139e 8bf4            mov     esi,esp
011113a0 683c571101      push    offset SimpleDemo!`string' (0111573c)
011113a5 ff15b0821101    call    dword ptr [SimpleDemo!_imp__printf (011182b0)]
011113ab 83c404          add     esp,4
011113ae 3bf4            cmp     esi,esp
011113b0 e877fdffff      call    SimpleDemo!ILT+295(__RTC_CheckEsp) (0111112c)
011113b5 33c0            xor     eax,eax
011113b7 5f              pop     edi
011113b8 5e              pop     esi
011113b9 5b              pop     ebx
011113ba 81c4c0000000    add     esp,0C0h
011113c0 3bec            cmp     ebp,esp
011113c2 e865fdffff      call    SimpleDemo!ILT+295(__RTC_CheckEsp) (0111112c)
011113c7 8be5            mov     esp,ebp
011113c9 5d              pop     ebp
011113ca c3              ret
Run Code Online (Sandbox Code Playgroud)

我完全理解它有些困难.什么是SimpleDemo!ILT在这里做的事情是什么?

011113c0比较ebp和esp的指令有什么意义

由于我在main()函数中没有任何局部变量,为什么在01111383的loacation中还有一个子esp,0C0h

非常感谢.

更新1

虽然我仍然不知道ILT的含义,但__RTC_CheckESP用于运行时检查.可以通过在main()函数之前放置以下编译指示来消除这些代码.

#pragma runtime_checks( "su", off )
Run Code Online (Sandbox Code Playgroud)

参考:

http://msdn.microsoft.com/en-us/library/8wtf2dfz.aspx

http://msdn.microsoft.com/en-us/library/6kasb93x.aspx

更新2

子ESP,0C0H指令分配另一个0C0H字节的堆栈上的额外空间.然后EAX充满了0xCCCCCCCC,这是4个字节,因为ECX = 30h,4*30h = 0C0h,所以指令rep stos dword ptr es:[edi]用0xCC填充额外的空格.但堆栈上的这个额外空间是什么?这是安全带吗?另外我注意到,如果我关闭运行时检查,如更新1所示,堆栈上仍有这样的额外空间,但要小得多.这个空间没有填充0xCC.

没有运行时检查的汇编代码如下所示:

SimpleDemo!main:
00231250 55              push    ebp
00231251 8bec            mov     ebp,esp
00231253 83ec40          sub     esp,40h <-- Still extra space allocated from stack, but smaller
00231256 53              push    ebx
00231257 56              push    esi
00231258 57              push    edi
00231259 683c472300      push    offset SimpleDemo!`string' (0023473c)
0023125e ff1538722300    call    dword ptr [SimpleDemo!_imp__printf (00237238)]
00231264 83c404          add     esp,4
00231267 33c0            xor     eax,eax
00231269 5f              pop     edi
0023126a 5e              pop     esi
0023126b 5b              pop     ebx
0023126c 8be5            mov     esp,ebp
0023126e 5d              pop     ebp
0023126f c3              ret
Run Code Online (Sandbox Code Playgroud)

Ski*_*izz 33

我已经注释了汇编程序,希望这会对你有所帮助.以'd'开头的行是调试代码行,以'r'开头的行是运行时检查代码行.我还提出了我认为没有运行时检查版本和发布版本的调试.

  ; The ebp register is used to access local variables that are stored on the stack, 
  ; this is known as a stack frame. Before we start doing anything, we need to save 
  ; the stack frame of the calling function so it can be restored when we finish.
  push    ebp                   
  ; These two instructions create our stack frame, in this case, 192 bytes
  ; This space, although not used in this case, is useful for edit-and-continue. If you
  ; break the program and add code which requires a local variable, the space is 
  ; available for it. This is much simpler than trying to relocate stack variables, 
  ; especially if you have pointers to stack variables.
  mov     ebp,esp             
d sub     esp,0C0h              
  ; C/C++ functions shouldn't alter these three registers in this build configuration,
  ; so save them. These are stored below our stack frame (the stack moves down in memory)
r push    ebx
r push    esi
r push    edi                   
  ; This puts the address of the stack frame bottom (lowest address) into edi...
d lea     edi,[ebp-0C0h]        
  ; ...and then fill the stack frame with the uninitialised data value (ecx = number of
  ; dwords, eax = value to store)
d mov     ecx,30h
d mov     eax,0CCCCCCCCh     
d rep stos dword ptr es:[edi]   
  ; Stack checking code: the stack pointer is stored in esi
r mov     esi,esp               
  ; This is the first parameter to printf. Parameters are pushed onto the stack 
  ; in reverse order (i.e. last parameter pushed first) before calling the function.
  push    offset SimpleDemo!`string' 
  ; This is the call to printf. Note the call is indirect, the target address is
  ; specified in the memory address SimpleDemo!_imp__printf, which is filled in when
  ; the executable is loaded into RAM.
  call    dword ptr [SimpleDemo!_imp__printf] 
  ; In C/C++, the caller is responsible for removing the parameters. This is because
  ; the caller is the only code that knows how many parameters were put on the stack
  ; (thanks to the '...' parameter type)
  add     esp,4                 
  ; More stack checking code - this sets the zero flag if the stack pointer is pointing
  ; where we expect it to be pointing. 
r cmp     esi,esp               
  ; ILT - Import Lookup Table? This is a statically linked function which throws an
  ; exception/error if the zero flag is cleared (i.e. the stack pointer is pointing
  ; somewhere unexpected)
r call    SimpleDemo!ILT+295(__RTC_CheckEsp)) 
  ; The return value is stored in eax by convention
  xor     eax,eax               
  ; Restore the values we shouldn't have altered
r pop     edi
r pop     esi
r pop     ebx                   
  ; Destroy the stack frame
r add     esp,0C0h              
  ; More stack checking code - this sets the zero flag if the stack pointer is pointing
  ; where we expect it to be pointing. 
r cmp     ebp,esp               
  ; see above
r call    SimpleDemo!ILT+295(__RTC_CheckEsp) 
  ; This is the usual way to destroy the stack frame, but here it's not really necessary
  ; since ebp==esp
  mov     esp,ebp               
  ; Restore the caller's stack frame
  pop     ebp                   
  ; And exit
  ret                           


  ; Debug only, no runtime checks  
  push    ebp                   
  mov     ebp,esp             
d sub     esp,0C0h              
d lea     edi,[ebp-0C0h]        
d mov     ecx,30h
d mov     eax,0CCCCCCCCh     
d rep stos dword ptr es:[edi]   
  push    offset SimpleDemo!`string' 
  call    dword ptr [SimpleDemo!_imp__printf] 
  add     esp,4                 
  xor     eax,eax               
  mov     esp,ebp               
  pop     ebp                   
  ret                             


  ; Release mode (I'm assuming the optimiser is clever enough to drop the stack frame when there's no local variables)
  push    offset SimpleDemo!`string' 
  call    dword ptr [SimpleDemo!_imp__printf] 
  add     esp,4                 
  xor     eax,eax               
  ret                               
Run Code Online (Sandbox Code Playgroud)