我有一data.frame
组和日期.如何填写每组最小 - 最大日期范围内的所有缺失日期?
理想情况下我会这样做dplyr
.但最终,我只想用尽可能少的(可读)代码行来有效地完成这项工作.以下是一个最小的例子.我实际上有很多日期和小组.我的两种方法看起来都很难看.必须有更好的方法,对吗?
#### setup ####
library(sqldf)
library(dplyr)
df <- data.frame(the_group = rep(LETTERS[1:2], each=3), date = Sys.Date() + c(0:2, 1:3), stringsAsFactors = F) %>%
tbl_df() %>%
slice(-2) # represents that I may be missing data in a range!
#### dplyr approach with cross join dummy ####
full_seq <- data.frame(cross_join_dummy = 1, date = seq.Date(from=min(df$date), to=max(df$date), by = "day"))
range_by_group <- df %>%
group_by(the_group) %>%
summarise(min_date = min(date), max_date = max(date)) %>%
ungroup() %>%
mutate(cross_join_dummy = 1)
desired <- range_by_group %>%
inner_join(full_seq, by="cross_join_dummy") %>%
filter(date >= min_date, date <= max_date) %>%
select(the_group, date)
#### sqldf approach ####
full_seq <- data.frame(date = as.character(seq.Date(from=min(df$date), to=max(df$date), by="day")))
df <- df %>%
mutate(date = as.character(date))
range_by_group <- sqldf("
SELECT the_group, MIN(date) AS min_date, MAX(date) AS max_date
FROM df
GROUP BY the_group
")
desired <- sqldf("
SELECT rbg.the_group, fs.date
FROM range_by_group rbg
JOIN full_seq fs
ON fs.date BETWEEN rbg.min_date AND rbg.max_date
")
Run Code Online (Sandbox Code Playgroud)
1)没有包裹 - 由
这不使用任何包.by
分割df
通过df$the_group
,然后在每一个执行指定的操作. do.call("rbind", ...)
将各组重新组合在一起.
seq_date <- function(x) seq(min(x), max(x), by = "day")
do.call("rbind", by(df, df$the_group, with,
data.frame(the_group = the_group[1], date = seq_date(date))))
Run Code Online (Sandbox Code Playgroud)
2)data.table这是一个使用data.table的解决方案. seq_date
来自(1)
library(data.table)
dt <- as.data.table(df)
dt[, list(date = seq_date(date)), by = the_group]
Run Code Online (Sandbox Code Playgroud)
3)tidyverse 这使用map_df
purrr将公式表示法中给出的函数应用于组,并将结果放在一起形成数据框.data_frame
来自tibble包.seq_date来自(1).
library(tidyverse)
df %>%
split(.$the_group) %>%
map_df(~ data_frame(the_group = .$the_group[1], date = seq_date(.$date)))
Run Code Online (Sandbox Code Playgroud)
4)tapply
4a)tapply - tidyr/reshape2 seq_date
来自(1).
library(tidyr)
library(reshape2)
df %>%
{ tapply(.$date, .$the_group, seq_date, simplify = FALSE) } %>%
melt %>%
unnest
Run Code Online (Sandbox Code Playgroud)
4b)tapply - 没有包 最后一行将输出组合在一起,tapply
避免了任何包的需要. seq_date
来自(1).
ta <- tapply(df$date, df$the_group, seq_date, simplify = FALSE)
data.frame(the_group = rep(names(ta), lengths(ta)), date = do.call("c", ta))
Run Code Online (Sandbox Code Playgroud)
4C)tapply -晶格我们可以用格子包的make.groups
上ta
从(4B).网格预先安装了R,因此不需要安装任何其他软件包.不幸的是make.groups
删除了Date class
属性,所以我们必须把它放回去.还make.groups
使用which
和data
列名称,以便我们修复列名称.
library(lattice)
with(do.call("make.groups", ta),
data.frame(the_group = which, date = structure(data, class = "Date")))
Run Code Online (Sandbox Code Playgroud)
4D)tapply -没有软件包-叠 我们可以使用stack
转换ta
从(4B),以提供我们除去所期望的形式"Date"
一流.然后申请后stack
我们可以恢复"Date"
班级. stack
使用我们替换的硬编码列名称setNames
.
stack_dates <- function(x)
transform(stack(lapply(x, as.vector)), values = structure(values, class = "Date"))
setNames(stack_dates(ta)[2:1], c("the_group", "date"))
Run Code Online (Sandbox Code Playgroud)