lor*_*das 0 python numpy decision-tree scikit-learn
下面给出的是我的代码
dataset = np.genfromtxt('train_py.csv', dtype=float, delimiter=",")
X_train, X_test, y_train, y_test = train_test_split(dataset[:,:-1],dataset[:,-1], test_size=0.2,random_state=0)
model = tree.DecisionTreeClassifier(criterion='gini')
#y_train = y_train.tolist()
#X_train = X_train.tolist()
model.fit(X_train, y_train)
model.score(X_train, y_train)
predicted= model.predict(x_test)
Run Code Online (Sandbox Code Playgroud)
我正在尝试在使用numpy库导入的自定义数据集上使用决策树分类器。但是当我尝试拟合模型时,我得到了ValueError。我尝试同时使用numpy数组和非numpy数组(例如列表),但似乎仍然无法找出导致错误的原因。任何帮助表示赞赏。
Traceback (most recent call last):
File "tree.py", line 19, in <module>
model.fit(X_train, y_train)
File "/usr/local/lib/python2.7/dist-packages/sklearn/tree/tree.py", line 177, in fit
check_classification_targets(y)
File "/usr/local/lib/python2.7/dist-packages/sklearn/utils/multiclass.py", line 173, in check_classification_targets
raise ValueError("Unknown label type: %r" % y)
ValueError: Unknown label type: array([[ 252.3352],....<until end of array>
Run Code Online (Sandbox Code Playgroud)