tch*_*rty 7 r dplyr tidyr purrr
在实施的数据科学(TM)整洁模型中modelr,使用列表列组织重采样数据:
library(modelr)
library(tidyverse)
# create the k-folds
df_heights_resampled = heights %>%
crossv_kfold(k = 10, id = "Resample ID")
Run Code Online (Sandbox Code Playgroud)
可以为map列表列中的每个训练数据集建立模型,train并通过mapping到列表列来计算性能指标test.
如果需要使用多个模型,则需要对每个模型重复此操作.
# create a list of formulas
formulas_heights = formulas(
.response = ~ income,
model1 = ~ height + weight + marital + sex,
model2 = ~ height + weight + marital + sex + education
)
# fit each of the models in the list of formulas
df_heights_resampled = df_heights_resampled %>%
mutate(
model1 = map(train, function(train_data) {
lm(formulas_heights[[1]], data = train_data)
}),
model2 = map(train, function(train_data) {
lm(formulas_heights[[2]], data = train_data)
})
)
# score the models on the test sets
df_heights_resampled = df_heights_resampled %>%
mutate(
rmse1 = map2_dbl(.x = model1, .y = test, .f = rmse),
rmse2 = map2_dbl(.x = model2, .y = test, .f = rmse)
)
Run Code Online (Sandbox Code Playgroud)
这使:
> df_heights_resampled
# A tibble: 10 × 7
train test `Resample ID` model1 model2 rmse1 rmse2
<list> <list> <chr> <list> <list> <dbl> <dbl>
1 <S3: resample> <S3: resample> 01 <S3: lm> <S3: lm> 58018.35 53903.99
2 <S3: resample> <S3: resample> 02 <S3: lm> <S3: lm> 55117.37 50279.38
3 <S3: resample> <S3: resample> 03 <S3: lm> <S3: lm> 49005.82 44613.93
4 <S3: resample> <S3: resample> 04 <S3: lm> <S3: lm> 55437.07 51068.90
5 <S3: resample> <S3: resample> 05 <S3: lm> <S3: lm> 48845.35 44673.88
6 <S3: resample> <S3: resample> 06 <S3: lm> <S3: lm> 58226.69 54010.50
7 <S3: resample> <S3: resample> 07 <S3: lm> <S3: lm> 56571.93 53322.41
8 <S3: resample> <S3: resample> 08 <S3: lm> <S3: lm> 46084.82 42294.50
9 <S3: resample> <S3: resample> 09 <S3: lm> <S3: lm> 59762.22 54814.55
10 <S3: resample> <S3: resample> 10 <S3: lm> <S3: lm> 45328.48 41882.79
Run Code Online (Sandbox Code Playgroud)
如果要探索的模型数量很大,这可能会非常快.modelr提供fit_with允许迭代多个模型的函数(由多个公式表征),但似乎不允许像train上面模型中那样的列表列.我假设其中一个*map*函数系列将使这成为可能(invoke_map?),但还是无法弄清楚如何.
map您可以使用和以编程方式构建调用lazyeval::interp。我很好奇是否有一个纯粹的purrr解决方案,但问题是您想要创建多个列,并且需要多次调用。也许purrr解决方案会创建另一个包含所有模型的列表列。
library(lazyeval)\nmodel_calls <- map(formulas_heights, \n ~interp(~map(train, ~lm(form, data = .x)), form = .x))\nscore_calls <- map(names(model_calls), \n ~interp(~map2_dbl(.x = m, .y = test, .f = rmse), m = as.name(.x)))\nnames(score_calls) <- paste0("rmse", seq_along(score_calls))\n\ndf_heights_resampled %>% mutate_(.dots = c(model_calls, score_calls))\nRun Code Online (Sandbox Code Playgroud)\n\n\n\nRun Code Online (Sandbox Code Playgroud)\n# A tibble: 10 \xc3\x97 7\n train test `Resample ID` model1 model2 rmse1 rmse2\n <list> <list> <chr> <list> <list> <dbl> <dbl>\n1 <S3: resample> <S3: resample> 01 <S3: lm> <S3: lm> 44720.86 41452.07\n2 <S3: resample> <S3: resample> 02 <S3: lm> <S3: lm> 54174.38 48823.03\n3 <S3: resample> <S3: resample> 03 <S3: lm> <S3: lm> 56854.21 52725.62\n4 <S3: resample> <S3: resample> 04 <S3: lm> <S3: lm> 53312.38 48797.48\n5 <S3: resample> <S3: resample> 05 <S3: lm> <S3: lm> 61883.90 57469.17\n6 <S3: resample> <S3: resample> 06 <S3: lm> <S3: lm> 55709.83 50867.26\n7 <S3: resample> <S3: resample> 07 <S3: lm> <S3: lm> 53036.06 48698.07\n8 <S3: resample> <S3: resample> 08 <S3: lm> <S3: lm> 55986.83 52717.94\n9 <S3: resample> <S3: resample> 09 <S3: lm> <S3: lm> 51738.60 48006.74\n10 <S3: resample> <S3: resample> 10 <S3: lm> <S3: lm> 45061.22 41480.35\n
| 归档时间: |
|
| 查看次数: |
582 次 |
| 最近记录: |