Abh*_*Rai 2 conv-neural-network keras
对于以下CNN
model = Sequential()
model.add(Convolution2D(64, 3, 3, border_mode='same', input_shape=(3, 256, 256)))
# now model.output_shape == (None, 64, 256, 256)
# add a 3x3 convolution on top, with 32 output filters:
model.add(Convolution2D(32, 3, 3, border_mode='same'))
# now model.output_shape == (None, 32, 256, 256)
print(model.summary())
Run Code Online (Sandbox Code Playgroud)
但是,模型摘要提供以下输出
____________________________________________________________________________________________________
Layer (type) Output Shape Param # Connected to
====================================================================================================
convolution2d_44 (Convolution2D) (None, 3, 256, 64) 147520 convolution2d_input_24[0][0]
____________________________________________________________________________________________________
convolution2d_45 (Convolution2D) (None, 3, 256, 32) 18464 convolution2d_44[0][0]
====================================================================================================
Total params: 165984
Run Code Online (Sandbox Code Playgroud)
为什么我得到给定的输出形状?
这是由设置引起的问题input_shape.在当前设置中,您希望输入带有3个通道的256x256.但是,Keras认为你提供的是具有256个通道的3x256图像.有几种方法可以纠正它.
选项1:更改订单 input_shape
选项2:image_dim_ordering在图层中指定
选项3:通过在〜/ .keras/keras.json中将'tf'更改为'th'来修改keras配置文件
| 归档时间: |
|
| 查看次数: |
2122 次 |
| 最近记录: |