mac*_*rus 19 python multithreading ioerror scikit-learn
我正在使用scikit-learn为LDA模型提供大量数据.相关代码片段如下所示:
lda = LatentDirichletAllocation(n_topics = n_topics,
max_iter = iters,
learning_method = 'online',
learning_offset = offset,
random_state = 0,
evaluate_every = 5,
n_jobs = 3,
verbose = 0)
lda.fit(X)
Run Code Online (Sandbox Code Playgroud)
(我想这里唯一可能相关的细节是我正在使用多个工作.)
经过一段时间后,即使磁盘上有足够的空间和足够的可用内存,我也会收到"设备上没有剩余空间"错误.我在两台不同的计算机上(在我的本地计算机和远程服务器上)多次尝试相同的代码,首先使用python3,然后使用python2,每次我都得到相同的错误.
如果我在较小的数据样本上运行相同的代码,一切正常.
整个堆栈跟踪:
Failed to save <type 'numpy.ndarray'> to .npy file:
Traceback (most recent call last):
File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 271, in save
obj, filename = self._write_array(obj, filename)
File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 231, in _write_array
self.np.save(filename, array)
File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/numpy/lib/npyio.py", line 491, in save
pickle_kwargs=pickle_kwargs)
File "/home/ubuntu/anaconda2/lib/python2.7/site-packages/numpy/lib/format.py", line 584, in write_array
array.tofile(fp)
IOError: 275500 requested and 210934 written
IOErrorTraceback (most recent call last)
<ipython-input-7-6af7e7c9845f> in <module>()
7 n_jobs = 3,
8 verbose = 0)
----> 9 lda.fit(X)
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in fit(self, X, y)
509 for idx_slice in gen_batches(n_samples, batch_size):
510 self._em_step(X[idx_slice, :], total_samples=n_samples,
--> 511 batch_update=False, parallel=parallel)
512 else:
513 # batch update
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in _em_step(self, X, total_samples, batch_update, parallel)
403 # E-step
404 _, suff_stats = self._e_step(X, cal_sstats=True, random_init=True,
--> 405 parallel=parallel)
406
407 # M-step
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/decomposition/online_lda.pyc in _e_step(self, X, cal_sstats, random_init, parallel)
356 self.mean_change_tol, cal_sstats,
357 random_state)
--> 358 for idx_slice in gen_even_slices(X.shape[0], n_jobs))
359
360 # merge result
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
808 # consumption.
809 self._iterating = False
--> 810 self.retrieve()
811 # Make sure that we get a last message telling us we are done
812 elapsed_time = time.time() - self._start_time
/home/ubuntu/anaconda2/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in retrieve(self)
725 job = self._jobs.pop(0)
726 try:
--> 727 self._output.extend(job.get())
728 except tuple(self.exceptions) as exception:
729 # Stop dispatching any new job in the async callback thread
/home/ubuntu/anaconda2/lib/python2.7/multiprocessing/pool.pyc in get(self, timeout)
565 return self._value
566 else:
--> 567 raise self._value
568
569 def _set(self, i, obj):
IOError: [Errno 28] No space left on device
Run Code Online (Sandbox Code Playgroud)
sil*_*ser 32
有同样的问题LatentDirichletAllocation
.看来,你的共享内存不足(/dev/shm
运行时df -h
).尝试将JOBLIB_TEMP_FOLDER
环境变量设置为不同的东西:例如,to /tmp
.在我的情况下,它解决了这个问题.
或者只是增加共享内存的大小,如果您拥有正在训练LDA的机器的相应权限.
使用共享内存且不允许进行I/O操作时会发生此问题.对于大多数Kaggle用户来说,这是一个令人沮丧的问题,同时适合机器学习模型.
我通过使用以下代码设置JOBLIB_TEMP_FOLDER变量来克服此问题.
%env JOBLIB_TEMP_FOLDER=/tmp
Run Code Online (Sandbox Code Playgroud)