ClassCastException:org.apache.spark.ml.linalg.DenseVector无法强制转换为org.apache.spark.mllib.linalg.Vector

Sud*_*van 5 apache-spark apache-spark-mllib

有人可以帮助我解决以下错误吗?我试图将数据帧转换为rdd,以便它可以用于回归模型构建.

SPARK版本:2.0.0

Error => ClassCastException:org.apache.spark.ml.linalg.DenseVector 无法强制转换 org.apache.spark.mllib.linalg.向量

代码=>

import org.apache.spark.mllib.classification.LogisticRegressionWithLBFGS
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.Row

val binarizer2: Binarizer = new Binarizer()
    .setInputCol("repay_amt").setOutputCol("label").setThreshold(20.00)

df = binarizer2.transform(df)

val assembler = new VectorAssembler()
.setInputCols(Array("tot_txns", "avg_unpaiddue", "max_unpaiddue", "sale_txn", "max_amt", "tot_sale_amt")).setOutputCol("features")

df = assembler.transform(df)

df.write.mode(SaveMode.Overwrite).parquet("lazpay_final_data.parquet")

val df2 = spark.read.parquet("lazpay_final_data.parquet/")
val df3= df2.rdd.map(r => LabeledPoint(r.getDouble(0),r.getAs("features")))
Run Code Online (Sandbox Code Playgroud)

数据=>

在此输入图像描述

Ber*_*erk 5

我首先将 ml SparseVector 转换为 Dense Vector,然后再转换为 mllib Vector,从而解决了这个问题。

例如:

val denseVector = r.getAs[org.apache.spark.ml.linalg.SparseVector]("features").toDense
  org.apache.spark.mllib.linalg.Vectors.fromML(denseVector)
Run Code Online (Sandbox Code Playgroud)