use*_*469 3 machine-learning neural-network gradient-descent deep-learning caffe
我正在使用caffe在我自己的数据上训练AlexNet.我看到的一个问题是"训练净输出"损失和"迭代损失"在训练过程中几乎相同.而且,这种损失有波动.喜欢:
Run Code Online (Sandbox Code Playgroud)... ...Iteration 900, loss 0.649719 ... Train net output #0: loss = 0.649719 (* 1 = 0.649719 loss ) ... Iteration 900, lr = 0.001 ...Iteration 1000, loss 0.892498 ... Train net output #0: loss = 0.892498 (* 1 = 0.892498 loss ) ... Iteration 1000, lr = 0.001 ...Iteration 1100, loss 0.550938 ... Train net output #0: loss = 0.550944 (* 1 = 0.550944 loss ) ... Iteration 1100, lr = 0.001 ...
我solver是:
net: "/train_val.prototxt"
test_iter: 1999
test_interval: 10441
base_lr: 0.001
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 100
max_iter: 208820
momentum: 0.9
weight_decay: 0.0005
snapshot: 10441
snapshot_prefix: "/caffe_alexnet_train"
solver_mode: GPU
Run Code Online (Sandbox Code Playgroud)
average_loss迭代次数.另一方面,报告的"列车净输出......"仅报告当前迭代的每个净输出.average_loss你的'solver',因此average_loss=1在默认情况下.由于您只有一个损失输出,loss_weight=1报告的"列车净输出......"和 "迭代损失"是相同的(达到显示精度).总结一下:你的输出完全正常.
| 归档时间: |
|
| 查看次数: |
1379 次 |
| 最近记录: |