我有一个高度可配置的类,有许多模板参数,如下所示:
template<bool OptionA = false, bool OptionB = false, bool OptionC = false, class T = Class1B>
class MyClass
{
}
Run Code Online (Sandbox Code Playgroud)
现在,如果我想创建类类型并且我只想将OptionB设置为true,我必须执行以下操作:
MyClass<false, true>
特别是对于许多模板参数,这变得很麻烦.
不,我的问题是,是否有任何可用于使用构建器模式创建基于模板的类类型的示例?
我正在寻找这样的东西:
class Builder
{
useOptionA();
useOptionB();
useOptionC();
useClass2B(); //instead of Class1B
create();
}
Run Code Online (Sandbox Code Playgroud)
最后一个Builder.useOptionB().useOptionC().useClass2B.create()应该回来的电话MyClass<false, true, true, Class2B>.这可能吗?
编辑:向模板参数列表添加了类.
正如其他人所说,做你想做的最简单的方法是用一个enum而不是一个Builder.但是,如果你做想要一个生成器,你可以尝试这样的事:
template<bool OptionA = false,
bool OptionB = false,
bool OptionC = false,
typename T = Class1B>
struct Builder_t
{
Builder_t() = default;
// ~Builder_t() { std::cout << "Builder dtor." << std::endl; }
auto useOptionA() -> Builder_t<true, OptionB, OptionC, T> { return {}; }
auto useOptionB() -> Builder_t<OptionA, true, OptionC, T> { return {}; }
auto useOptionC() -> Builder_t<OptionA, OptionB, true, T> { return {}; }
auto useClass2B() -> Builder_t<OptionA, OptionB, OptionC, Class2B> { return {}; }
MyClass<OptionA, OptionB, OptionC, T> create() { return {}; }
};
using Builder = Builder_t<>;
// ...
// Build MyClass<true, false, false, Class2B>:
auto ma2 = Builder{}.useOptionA().useClass2B().create();
Run Code Online (Sandbox Code Playgroud)
这会导致每个函数返回一个distinct Builder,其模板将被下一个函数使用; 最终模板用作MyClass'模板.每个函数都修改其指定的模板参数,允许编译时版本的Builder模式.但是,它确实有成本,如果取消注释用户定义的析构函数,这一点很明显.
考虑这个简单的测试程序:
#include <iostream>
#include <typeinfo>
class Class1B {};
class Class2B {};
template<bool OptionA = false,
bool OptionB = false,
bool OptionC = false,
typename T = Class1B>
class MyClass
{
public:
MyClass() {
std::cout << "MyClass<"
<< OptionA << ", "
<< OptionB << ", "
<< OptionC << ", "
<< "type " << typeid(T).name() << ">"
<< std::endl;
}
};
template<bool OptionA = false,
bool OptionB = false,
bool OptionC = false,
typename T = Class1B>
struct Builder_t
{
Builder_t() = default;
// ~Builder_t() { std::cout << "Builder dtor." << std::endl; }
auto useOptionA() -> Builder_t<true, OptionB, OptionC, T> { return {}; }
auto useOptionB() -> Builder_t<OptionA, true, OptionC, T> { return {}; }
auto useOptionC() -> Builder_t<OptionA, OptionB, true, T> { return {}; }
auto useClass2B() -> Builder_t<OptionA, OptionB, OptionC, Class2B> { return {}; }
MyClass<OptionA, OptionB, OptionC, T> create() { return {}; }
};
using Builder = Builder_t<>;
int main()
{
std::cout << std::boolalpha;
std::cout << "Default:\n";
std::cout << "Direct: ";
MyClass<> m;
std::cout << "Builder: ";
auto mdefault = Builder{}.create();
std::cout << std::endl;
std::cout << "Builder pattern:\n";
std::cout << "A: ";
auto ma = Builder{}.useOptionA().create();
std::cout << "C: ";
auto mc = Builder{}.useOptionC().create();
std::cout << "---\n";
std::cout << "AB: ";
auto mab = Builder{}.useOptionA().useOptionB().create();
std::cout << "B2: ";
auto mb2 = Builder{}.useOptionB().useClass2B().create();
std::cout << "---\n";
std::cout << "ABC: ";
auto mabc = Builder{}.useOptionA().useOptionB().useOptionC().create();
std::cout << "AC2: ";
auto mac2 = Builder{}.useOptionA().useOptionC().useClass2B().create();
std::cout << "---\n";
std::cout << "ABC2: ";
auto mabc2 = Builder{}.useOptionA().useOptionB().useOptionC().useClass2B().create();
}
Run Code Online (Sandbox Code Playgroud)
通常,输出如下(使用GCC):
Default:
Direct: MyClass<false, false, false, type 7Class1B>
Builder: MyClass<false, false, false, type 7Class1B>
Builder pattern:
A: MyClass<true, false, false, type 7Class1B>
C: MyClass<false, false, true, type 7Class1B>
---
AB: MyClass<true, true, false, type 7Class1B>
B2: MyClass<false, true, false, type 7Class2B>
---
ABC: MyClass<true, true, true, type 7Class1B>
AC2: MyClass<true, false, true, type 7Class2B>
---
ABC2: MyClass<true, true, true, type 7Class2B>
Run Code Online (Sandbox Code Playgroud)
但是,如果我们取消注释析构函数......
Default:
Direct: MyClass<false, false, false, type 7Class1B>
Builder: MyClass<false, false, false, type 7Class1B>
Builder dtor.
Builder pattern:
A: MyClass<true, false, false, type 7Class1B>
Builder dtor.
Builder dtor.
C: MyClass<false, false, true, type 7Class1B>
Builder dtor.
Builder dtor.
---
AB: MyClass<true, true, false, type 7Class1B>
Builder dtor.
Builder dtor.
Builder dtor.
B2: MyClass<false, true, false, type 7Class2B>
Builder dtor.
Builder dtor.
Builder dtor.
---
ABC: MyClass<true, true, true, type 7Class1B>
Builder dtor.
Builder dtor.
Builder dtor.
Builder dtor.
AC2: MyClass<true, false, true, type 7Class2B>
Builder dtor.
Builder dtor.
Builder dtor.
Builder dtor.
---
ABC2: MyClass<true, true, true, type 7Class2B>
Builder dtor.
Builder dtor.
Builder dtor.
Builder dtor.
Builder dtor.
Run Code Online (Sandbox Code Playgroud)
前面的每个调用Builder_t::create()创建一个不同的Builder_t,所有这些都在创建实例后被销毁.这可以通过创建Builder_t一个constexpr类来减轻,但如果有大量参数需要处理,这可能会减慢编译速度:
template<bool OptionA = false,
bool OptionB = false,
bool OptionC = false,
typename T = Class1B>
struct Builder_t
{
// Uncomment if you want to guarantee that your compiler treats Builder_t as constexpr.
// size_t CompTimeTest;
constexpr Builder_t()
// Uncomment if you want to guarantee that your compiler treats Builder_t as constexpr.
// : CompTimeTest((OptionA ? 1 : 0) +
// (OptionB ? 2 : 0) +
// (OptionC ? 4 : 0) +
// (std::is_same<T, Class2B>{} ? 8 : 0))
{}
constexpr auto useOptionA() -> Builder_t<true, OptionB, OptionC, T> { return {}; }
constexpr auto useOptionB() -> Builder_t<OptionA, true, OptionC, T> { return {}; }
constexpr auto useOptionC() -> Builder_t<OptionA, OptionB, true, T> { return {}; }
constexpr auto useClass2B() -> Builder_t<OptionA, OptionB, OptionC, Class2B> { return {}; }
constexpr MyClass<OptionA, OptionB, OptionC, T> create() { return {}; }
};
using Builder = Builder_t<>;
// ....
// Uncomment if you want to guarantee that your compiler treats Builder_t as constexpr.
// char arr[Builder{}/*.useOptionA()/*.useOptionB()/*.useOptionC()/*.useClass2B()/**/.CompTimeTest];
// std::cout << sizeof(arr) << '\n';
Run Code Online (Sandbox Code Playgroud)