Mar*_*598 31 python moving-average python-3.x pandas
我想在我的交换时间序列中添加移动平均线计算.
Quandl的原始数据
Exchange = Quandl.get("BUNDESBANK/BBEX3_D_SEK_USD_CA_AC_000",authtoken ="xxxxxxx")
Value
Date
1989-01-02 6.10500
1989-01-03 6.07500
1989-01-04 6.10750
1989-01-05 6.15250
1989-01-09 6.25500
1989-01-10 6.24250
1989-01-11 6.26250
1989-01-12 6.23250
1989-01-13 6.27750
1989-01-16 6.31250
Run Code Online (Sandbox Code Playgroud)
MovingAverage = pd.rolling_mean(Exchange,5)
Value
Date
1989-01-02 NaN
1989-01-03 NaN
1989-01-04 NaN
1989-01-05 NaN
1989-01-09 6.13900
1989-01-10 6.16650
1989-01-11 6.20400
1989-01-12 6.22900
1989-01-13 6.25400
1989-01-16 6.26550
Run Code Online (Sandbox Code Playgroud)
我想使用相同的索引(日期)将计算出的移动平均线作为新值添加到"值"之后的右侧.最好我还想将计算出的移动平均值重命名为"MA"
Rom*_*ain 51
滚动平均值返回a Series您只需将其添加为DataFrame(MA)的新列,如下所述.
有关信息,该rolling_mean函数已在pandas较新版本中弃用.我在我的示例中使用了新方法,请参阅下面pandas 文档中的引用
警告在此之前版本0.18.0, ,
pd.rolling_*,pd.expanding_*和pd.ewm*是模块级的功能,现在不建议使用.这些被替换为使用Rolling,Expanding和EWM.对象以及相应的方法调用.
df['MA'] = df.rolling(window=5).mean()
print(df)
# Value MA
# Date
# 1989-01-02 6.11 NaN
# 1989-01-03 6.08 NaN
# 1989-01-04 6.11 NaN
# 1989-01-05 6.15 NaN
# 1989-01-09 6.25 6.14
# 1989-01-10 6.24 6.17
# 1989-01-11 6.26 6.20
# 1989-01-12 6.23 6.23
# 1989-01-13 6.28 6.25
# 1989-01-16 6.31 6.27
Run Code Online (Sandbox Code Playgroud)
Mar*_*598 12
也可以使用以下代码直接在折线图中计算和可视化移动平均线:
使用股票价格数据的示例:
import pandas_datareader.data as web
import matplotlib.pyplot as plt
import datetime
plt.style.use('ggplot')
# Input variables
start = datetime.datetime(2016, 1, 01)
end = datetime.datetime(2018, 3, 29)
stock = 'WFC'
# Extrating data
df = web.DataReader(stock,'morningstar', start, end)
df = df['Close']
print df
plt.plot(df['WFC'],label= 'Close')
plt.plot(df['WFC'].rolling(9).mean(),label= 'MA 9 days')
plt.plot(df['WFC'].rolling(21).mean(),label= 'MA 21 days')
plt.legend(loc='best')
plt.title('Wells Fargo\nClose and Moving Averages')
plt.show()
Run Code Online (Sandbox Code Playgroud)
有关如何执行此操作的教程:https : //youtu.be/XWAPPyF62Vg
为了获得 pandas 的移动平均值,我们可以使用 cum_sum 然后除以计数。
这是工作示例:
import pandas as pd
import numpy as np
df = pd.DataFrame({'id': range(5),
'value': range(100,600,100)})
# some other similar statistics
df['cum_sum'] = df['value'].cumsum()
df['count'] = range(1,len(df['value'])+1)
df['mov_avg'] = df['cum_sum'] / df['count']
# other statistics
df['rolling_mean2'] = df['value'].rolling(window=2).mean()
print(df)
Run Code Online (Sandbox Code Playgroud)
id value cum_sum count mov_avg rolling_mean2
0 0 100 100 1 100.0 NaN
1 1 200 300 2 150.0 150.0
2 2 300 600 3 200.0 250.0
3 3 400 1000 4 250.0 350.0
4 4 500 1500 5 300.0 450.0
Run Code Online (Sandbox Code Playgroud)
如果您计算的是多个移动平均线:
for i in range(2,10):
df['MA{}'.format(i)] = df.rolling(window=i).mean()
Run Code Online (Sandbox Code Playgroud)
然后你可以做所有MA的总平均值
df[[f for f in list(df) if "MA" in f]].mean(axis=1)
Run Code Online (Sandbox Code Playgroud)
| 归档时间: |
|
| 查看次数: |
61660 次 |
| 最近记录: |