将系列设置为索引

zth*_*.nc 5 python series dataframe python-2.7 pandas

我正在使用python 2.7获取数据框的数字列,data并将其设为具有日期索引的单个对象(系列),该日期是的另一列data

new_series = pd.Series(data['numerical_column'] , index=data['dates'])
Run Code Online (Sandbox Code Playgroud)

但是,当我这样做时,我NaN在系列中得到了一堆值:

dates
1980-01-31   NaN
1980-02-29   NaN
1980-03-31   NaN
1980-04-30   NaN
1980-05-31   NaN
1980-06-30   NaN
...
Run Code Online (Sandbox Code Playgroud)

为什么我的numerical_data价值观消失了?

我知道通过执行以下操作显然可以实现此目标,尽管我很好奇为什么最初的方法失败了。

new_series = data.set_index('dates')['numerical_column']
Run Code Online (Sandbox Code Playgroud)

jez*_*ael 6

我认为column的索引未对齐存在问题data['numerical_column']

因此需要将其转换为numpy array通过values

new_series = pd.Series(data['numerical_column'].values , index=data['dates'])
Run Code Online (Sandbox Code Playgroud)

样品:

import pandas as pd
import datetime

data = pd.DataFrame({
'dates': {0: datetime.date(1980, 1, 31), 1: datetime.date(1980, 2, 29), 
          2: datetime.date(1980, 3, 31), 3: datetime.date(1980, 4, 30), 
          4: datetime.date(1980, 5, 31), 5: datetime.date(1980, 6, 30)}, 
'numerical_column': {0: 1, 1: 4, 2: 5, 3: 3, 4: 1, 5: 0}})
print (data)
        dates  numerical_column
0  1980-01-31                 1
1  1980-02-29                 4
2  1980-03-31                 5
3  1980-04-30                 3
4  1980-05-31                 1
5  1980-06-30                 0

new_series = pd.Series(data['numerical_column'].values , index=data['dates'])
print (new_series)
dates
1980-01-31    1
1980-02-29    4
1980-03-31    5
1980-04-30    3
1980-05-31    1
1980-06-30    0
dtype: int64
Run Code Online (Sandbox Code Playgroud)

但是with的set_index方法更好,但是更慢:

#[60000 rows x 2 columns]
data = pd.concat([data]*10000).reset_index(drop=True)

In [65]: %timeit pd.Series(data['numerical_column'].values , index=data['dates'])
1000 loops, best of 3: 308 µs per loop

In [66]: %timeit data.set_index('dates')['numerical_column']
1000 loops, best of 3: 1.28 ms per loop
Run Code Online (Sandbox Code Playgroud)

验证

如果列的索引具有相同的索引,则效果很好:

s = data.set_index('dates')['numerical_column']
df = s.to_frame()
print (df)
            numerical_column
dates                       
1980-01-31                 1
1980-02-29                 4
1980-03-31                 5
1980-04-30                 3
1980-05-31                 1
1980-06-30                 0

new_series = pd.Series(df['numerical_column'] , index=data['dates'])
print (new_series)
dates
1980-01-31    1
1980-02-29    4
1980-03-31    5
1980-04-30    3
1980-05-31    1
1980-06-30    0
Name: numerical_column, dtype: int64
Run Code Online (Sandbox Code Playgroud)