当我使用比我的CPU有核心更多的线程时,为什么这段代码变得更快?

Xir*_*ema 15 c++ performance multithreading

我有一些计时代码,我用它来衡量给定代码片段的运行时间:

struct time_data {
    std::chrono::steady_clock::time_point start, end;

    auto get_duration() const {
        return end - start;
    }

    void print_data(std::ostream & out) const {
        out << str();
    }

    std::string str() const {
        static const std::locale loc{ "" };
        std::stringstream ss;
        ss.imbue(loc);
        ss << "Start:    " << std::setw(24) << std::chrono::nanoseconds{ start.time_since_epoch() }.count() << "ns\n";
        ss << "End:      " << std::setw(24) << std::chrono::nanoseconds{ end.time_since_epoch() }.count() << "ns\n";
        ss << "Duration: " << std::setw(24) << std::chrono::nanoseconds{ get_duration() }.count() << "ns\n";
        return ss.str();
    }

    static friend std::ostream & operator<<(std::ostream & out, const time_data & data) {
        return out << data.str();
    }
};

template<typename T>
time_data time_function(T && func) {
    time_data data;
    data.start = std::chrono::steady_clock::now();
    func();
    data.end = std::chrono::steady_clock::now();
    return data;
}
Run Code Online (Sandbox Code Playgroud)

然后,为了使用它,我有以下代码设计用于对一组数据执行累积,但是它不是简单地将数字加在一起,而是首先找到应用Collat​​z猜想总停止时间并将其累积.

template<typename T>
T accumulation_function(T a, T b) {
    T count = 0;
    while (b > 1) {
        if (b % 2 == 0) b /= 2;
        else b = b * 3 + 1;
        ++count;
    }
    return a + count;
}

template<typename IT>
auto std_sum(IT begin, IT end) {
    auto sum = (*begin - *begin);
    sum = std::accumulate(begin, end, sum, accumulation_function<decltype(sum)>);
    return sum;
}

template<typename IT>
auto single_thread_sum(IT begin, IT end) {
    auto sum = (*begin - *begin);
    IT current = begin;
    while (current != end) {
        sum = accumulation_function(sum, *current);
        ++current;
    }
    return sum;
}

template<typename IT, uint64_t N>
auto N_thread_smart_sum(IT begin, IT end) {
    auto sum = (*begin - *begin);
    std::vector<std::thread> threads;
    std::array<decltype(sum), N> sums;
    auto dist = std::distance(begin, end);
    for (uint64_t i = 0; i < N; i++) {
        threads.emplace_back([=, &sums] {
            IT first = begin;
            IT last = begin;
            auto & tsum = sums[i];
            tsum = 0;
            std::advance(first, i * dist / N);
            std::advance(last, (i + 1) * dist / N);
            while (first != last) {
                tsum = accumulation_function(tsum, *first);
                ++first;
            }
        });
    }
    for (std::thread & thread : threads)
        thread.join();
    for (const auto & s : sums) {
        sum += s;
    }
    return sum;
}

template<typename IT>
auto two_thread_smart_sum(IT begin, IT end) {
    return N_thread_smart_sum<IT, 2>(begin, end);
}

template<typename IT>
auto four_thread_smart_sum(IT begin, IT end) {
    return N_thread_smart_sum<IT, 4>(begin, end);
}

template<typename IT>
auto eight_thread_smart_sum(IT begin, IT end) {
    return N_thread_smart_sum<IT, 8>(begin, end);
}

template<typename IT>
auto sixteen_thread_smart_sum(IT begin, IT end) {
    return N_thread_smart_sum<IT, 16>(begin, end);
}

template<typename IT>
auto thirty_two_thread_smart_sum(IT begin, IT end) {
    return N_thread_smart_sum<IT, 32>(begin, end);
}

template<typename IT>
auto sixty_four_thread_smart_sum(IT begin, IT end) {
    return N_thread_smart_sum<IT, 64>(begin, end);
}
Run Code Online (Sandbox Code Playgroud)

并且为了参考起见:main运行它的样板代码:

int main() {
    std::vector<int64_t> raw_data;
    auto fill_data = time_function([&raw_data] {
        constexpr uint64_t SIZE = 1'000'000'000ull;
        raw_data.resize(SIZE);
        std::vector<std::thread> threads;
        for (int i = 0; i < 8; i++) {
            threads.emplace_back([i, SIZE, &raw_data] {
                uint64_t begin = i * SIZE / 8;
                uint64_t end = (i + 1) * SIZE / 8;
                for (uint64_t index = begin; index < end; index++) {
                    raw_data[index] = begin % (20 + i);
                }
            });
        }
        for (std::thread & t : threads) 
            t.join();
    });

    int64_t sum;

    std::cout << std::setw(25) << "Fill Data" << std::endl;
    std::cout << fill_data << std::endl;

    auto std_data = time_function([&] {
        sum = std_sum(raw_data.begin(), raw_data.end());
    });

    std::cout << std::setw(25) << "STD Sum: " << sum << std::endl;
    std::cout << std_data << std::endl;

    auto single_data = time_function([&] {
        sum = single_thread_sum(raw_data.begin(), raw_data.end());
    });

    std::cout << std::setw(25) << "Single Sum: " << sum << std::endl;
    std::cout << single_data << std::endl;

    auto smart_2_data = time_function([&] {
        sum = two_thread_smart_sum(raw_data.begin(), raw_data.end());
    });

    std::cout << std::setw(25) << "Two-Thread-Smart Sum: " << sum << std::endl;
    std::cout << smart_2_data << std::endl;

    auto smart_4_data = time_function([&] {
        sum = four_thread_smart_sum(raw_data.begin(), raw_data.end());
    });

    std::cout << std::setw(25) << "Four-Thread-Smart Sum: " << sum << std::endl;
    std::cout << smart_4_data << std::endl;

    auto smart_8_data = time_function([&] {
        sum = eight_thread_smart_sum(raw_data.begin(), raw_data.end());
    });

    std::cout << std::setw(25) << "Eight-Thread-Smart Sum: " << sum << std::endl;
    std::cout << smart_8_data << std::endl;

    auto smart_16_data = time_function([&] {
        sum = sixteen_thread_smart_sum(raw_data.begin(), raw_data.end());
    });

    std::cout << std::setw(25) << "Sixteen-Thread-Smart Sum: " << sum << std::endl;
    std::cout << smart_16_data << std::endl;

    auto smart_32_data = time_function([&] {
        sum = thirty_two_thread_smart_sum(raw_data.begin(), raw_data.end());
    });

    std::cout << std::setw(25) << "Thirty-Two-Thread-Smart Sum: " << sum << std::endl;
    std::cout << smart_32_data << std::endl;

    auto smart_64_data = time_function([&] {
        sum = sixty_four_thread_smart_sum(raw_data.begin(), raw_data.end());
    });

    std::cout << std::setw(25) << "Sixty-Four-Thread-Smart Sum: " << sum << std::endl;
    std::cout << smart_64_data << std::endl;
    return 0;
}
Run Code Online (Sandbox Code Playgroud)

这是该程序的输出:

                Fill Data
Start:          16,295,979,890,252ns
End:            16,300,523,805,484ns
Duration:            4,543,915,232ns

                STD Sum: 7750000000
Start:          16,300,550,212,791ns
End:            16,313,216,607,890ns
Duration:           12,666,395,099ns

             Single Sum: 7750000000
Start:          16,313,216,694,522ns
End:            16,325,774,379,684ns
Duration:           12,557,685,162ns

   Two-Thread-Smart Sum: 7750000000
Start:          16,325,774,466,014ns
End:            16,334,441,032,868ns
Duration:            8,666,566,854ns

  Four-Thread-Smart Sum: 7750000000
Start:          16,334,441,137,913ns
End:            16,342,188,642,721ns
Duration:            7,747,504,808ns

 Eight-Thread-Smart Sum: 7750000000
Start:          16,342,188,770,706ns
End:            16,347,850,908,471ns
Duration:            5,662,137,765ns

Sixteen-Thread-Smart Sum: 7750000000
Start:          16,347,850,961,597ns
End:            16,352,187,838,584ns
Duration:            4,336,876,987ns

Thirty-Two-Thread-Smart Sum: 7750000000
Start:          16,352,187,891,710ns
End:            16,356,111,411,220ns
Duration:            3,923,519,510ns

Sixty-Four-Thread-Smart Sum: 7750000000
Start:          16,356,111,471,288ns
End:            16,359,988,028,812ns
Duration:            3,876,557,524ns
Run Code Online (Sandbox Code Playgroud)

前几个结果并不令人惊讶:我自编的累积代码与std::accumulate函数的作用基本相同(我看到它们在连续运行中都表现为"最快",暗示它们的实现可能类似).当我转移到两个线程和四个线程时,代码变得更快.这是有道理的,因为我使用的是英特尔4核处理器.

但超出这一点的结果令人困惑.我的CPU只有4个内核(如果考虑超线程,则只有8个内核),但即使我原谅超线程在8个线程上提供的边际性能提升,将数字增加到16,32和64个线程都会产生额外的性能提升.为什么是这样?当我很长时间没有CPU可以物理同时运行的线程数时,额外的线程如何产生额外的性能提升?

注意:这与此链接问题不同,因为我正在处理特定的用例和代码,而链接的问题是处理一般性问题.

编辑:

我对代码进行了调整,以便在创建线程时,将其优先级设置为Windows允许的最高优先级.从广义上讲,结果似乎是一样的.

                Fill Data
Start:          18,950,798,175,057ns
End:            18,955,085,850,007ns
Duration:            4,287,674,950ns

                STD Sum: 7750000000
Start:          18,955,086,975,013ns
End:            18,967,581,061,562ns
Duration:           12,494,086,549ns

             Single Sum: 7750000000
Start:          18,967,581,136,724ns
End:            18,980,127,355,698ns
Duration:           12,546,218,974ns

   Two-Thread-Smart Sum: 7750000000
Start:          18,980,127,426,332ns
End:            18,988,619,042,214ns
Duration:            8,491,615,882ns

  Four-Thread-Smart Sum: 7750000000
Start:          18,988,619,135,487ns
End:            18,996,215,684,824ns
Duration:            7,596,549,337ns

 Eight-Thread-Smart Sum: 7750000000
Start:          18,996,215,763,004ns
End:            19,002,055,977,730ns
Duration:            5,840,214,726ns

Sixteen-Thread-Smart Sum: 7750000000
Start:          19,002,056,055,608ns
End:            19,006,282,772,254ns
Duration:            4,226,716,646ns

Thirty-Two-Thread-Smart Sum: 7750000000
Start:          19,006,282,840,774ns
End:            19,010,539,676,914ns
Duration:            4,256,836,140ns

Sixty-Four-Thread-Smart Sum: 7750000000
Start:          19,010,539,758,113ns
End:            19,014,450,311,829ns
Duration:            3,910,553,716ns
Run Code Online (Sandbox Code Playgroud)

双编辑组合:

我编辑了程序以确保tsum变量是lambda中的局部变量,而不是lambda外部的引用.多线程代码加速了很多,但它仍然表现出相同的行为.

                Fill Data
Start:          21,740,931,802,656ns
End:            21,745,429,501,480ns
Duration:            4,497,698,824ns

                STD Sum: 7750000000
Start:          21,745,430,637,655ns
End:            21,758,206,612,632ns
Duration:           12,775,974,977ns

             Single Sum: 7750000000
Start:          21,758,206,681,153ns
End:            21,771,260,233,797ns
Duration:           13,053,552,644ns

   Two-Thread-Smart Sum: 7750000000
Start:          21,771,260,287,828ns
End:            21,777,845,764,595ns
Duration:            6,585,476,767ns

  Four-Thread-Smart Sum: 7750000000
Start:          21,777,845,831,002ns
End:            21,784,011,543,159ns
Duration:            6,165,712,157ns

 Eight-Thread-Smart Sum: 7750000000
Start:          21,784,011,628,584ns
End:            21,788,846,061,014ns
Duration:            4,834,432,430ns

Sixteen-Thread-Smart Sum: 7750000000
Start:          21,788,846,127,422ns
End:            21,791,921,652,246ns
Duration:            3,075,524,824ns

Thirty-Two-Thread-Smart Sum: 7750000000
Start:          21,791,921,747,330ns
End:            21,794,980,832,033ns
Duration:            3,059,084,703ns

Sixty-Four-Thread-Smart Sum: 7750000000
Start:          21,794,980,901,761ns
End:            21,797,937,401,426ns
Duration:            2,956,499,665ns
Run Code Online (Sandbox Code Playgroud)

TRIPLE EDIT WOMBO-COMBO:

我再次运行相同的测试,但相反.结果非常相似:

                Fill Data
Start:          22,845,472,001,475ns
End:            22,850,746,219,215ns
Duration:            5,274,217,740ns

Sixty-Four-Thread-Smart Sum: 7750000000
Start:          22,850,747,328,223ns
End:            22,853,951,903,952ns
Duration:            3,204,575,729ns

Thirty-Two-Thread-Smart Sum: 7750000000
Start:          22,853,951,981,830ns
End:            22,857,239,237,507ns
Duration:            3,287,255,677ns

Sixteen-Thread-Smart Sum: 7750000000
Start:          22,857,239,307,839ns
End:            22,860,389,285,305ns
Duration:            3,149,977,466ns

 Eight-Thread-Smart Sum: 7750000000
Start:          22,860,389,353,524ns
End:            22,864,828,560,484ns
Duration:            4,439,206,960ns

  Four-Thread-Smart Sum: 7750000000
Start:          22,864,828,633,834ns
End:            22,870,640,982,096ns
Duration:            5,812,348,262ns

   Two-Thread-Smart Sum: 7750000000
Start:          22,870,641,056,956ns
End:            22,877,032,284,384ns
Duration:            6,391,227,428ns

             Single Sum: 7750000000
Start:          22,877,032,367,997ns
End:            22,889,501,695,960ns
Duration:           12,469,327,963ns

                STD Sum: 7750000000
Start:          22,889,501,770,820ns
End:            22,902,014,633,229ns
Duration:           12,512,862,409ns
Run Code Online (Sandbox Code Playgroud)

120*_*arm 4

您的所有tsum写入都是相同的array,这将占用内存中的连续地址。这将导致所有这些写入发生缓存争用问题。拥有更多线程会将这些写入分散到不同的缓存行,因此 CPU 核心花费更少的时间使缓存行失效和重新加载。

尝试累积到局部tsum变量(而不是对 的引用),然后在循环完成时sums将其写入。sums[i]

  • 您的建议使所有多线程代码显着加速,但它仍然表现出相同的行为,即 16、32 和 64 线程的性能均明显优于 2、4 和 8 线程。 (2认同)