sme*_*eeb 9 java apache-spark spark-dataframe
在Scala中,我可以从内存中的字符串创建单行DataFrame,如下所示:
val stringAsList = List("buzz")
val df = sqlContext.sparkContext.parallelize(jsonValues).toDF("fizz")
df.show()
Run Code Online (Sandbox Code Playgroud)
当df.show()运行时,它输出:
+-----+
| fizz|
+-----+
| buzz|
+-----+
Run Code Online (Sandbox Code Playgroud)
现在我正在尝试从Java类中执行此操作.显然JavaRDDs没有toDF(String)方法.我试过了:
List<String> stringAsList = new ArrayList<String>();
stringAsList.add("buzz");
SQLContext sqlContext = new SQLContext(sparkContext);
DataFrame df = sqlContext.createDataFrame(sparkContext
.parallelize(stringAsList), StringType);
df.show();
Run Code Online (Sandbox Code Playgroud)
......但似乎仍然很短暂.现在df.show();执行时,我得到:
++
||
++
||
++
Run Code Online (Sandbox Code Playgroud)
(一个空的DF.)所以我问:使用Java API,如何将内存中的字符串读入一个只有1行1列的DataFrame中,并指定该列的名称?(这df.show()与上面的Scala相同)?
jgp*_*jgp 10
如果您需要升级,我已经为Spark 2创建了2个示例:
简单的Fizz/Buzz(或敌人/酒吧 - 老一代:)):
SparkSession spark = SparkSession.builder().appName("Build a DataFrame from Scratch").master("local[*]")
.getOrCreate();
List<String> stringAsList = new ArrayList<>();
stringAsList.add("bar");
JavaSparkContext sparkContext = new JavaSparkContext(spark.sparkContext());
JavaRDD<Row> rowRDD = sparkContext.parallelize(stringAsList).map((String row) -> RowFactory.create(row));
// Creates schema
StructType schema = DataTypes.createStructType(
new StructField[] { DataTypes.createStructField("foe", DataTypes.StringType, false) });
Dataset<Row> df = spark.sqlContext().createDataFrame(rowRDD, schema).toDF();
Run Code Online (Sandbox Code Playgroud)
2x2数据:
SparkSession spark = SparkSession.builder().appName("Build a DataFrame from Scratch").master("local[*]")
.getOrCreate();
List<String[]> stringAsList = new ArrayList<>();
stringAsList.add(new String[] { "bar1.1", "bar2.1" });
stringAsList.add(new String[] { "bar1.2", "bar2.2" });
JavaSparkContext sparkContext = new JavaSparkContext(spark.sparkContext());
JavaRDD<Row> rowRDD = sparkContext.parallelize(stringAsList).map((String[] row) -> RowFactory.create(row));
// Creates schema
StructType schema = DataTypes
.createStructType(new StructField[] { DataTypes.createStructField("foe1", DataTypes.StringType, false),
DataTypes.createStructField("foe2", DataTypes.StringType, false) });
Dataset<Row> df = spark.sqlContext().createDataFrame(rowRDD, schema).toDF();
Run Code Online (Sandbox Code Playgroud)
代码可以从以下网址下载:https://github.com/jgperrin/net.jgp.labs.spark.
您可以通过创建List到Rdd来实现这一点,而不是创建包含列名的Schema.
可能还有其他方式,它只是其中之一.
List<String> stringAsList = new ArrayList<String>();
stringAsList.add("buzz");
JavaRDD<Row> rowRDD = sparkContext.parallelize(stringAsList).map((String row) -> {
return RowFactory.create(row);
});
StructType schema = DataTypes.createStructType(new StructField[] { DataTypes.createStructField("fizz", DataTypes.StringType, false) });
DataFrame df = sqlContext.createDataFrame(rowRDD, schema).toDF();
df.show();
//+----+
|fizz|
+----+
|buzz|
Run Code Online (Sandbox Code Playgroud)